Skip to main content
Erschienen in: Neural Computing and Applications 20/2020

23.02.2020 | S.I. : Applying Artificial Intelligence to the Internet of Things

An optimal pruning algorithm of classifier ensembles: dynamic programming approach

verfasst von: Omar A. Alzubi, Jafar A. Alzubi, Mohammed Alweshah, Issa Qiqieh, Sara Al-Shami, Manikandan Ramachandran

Erschienen in: Neural Computing and Applications | Ausgabe 20/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, classifier ensemble techniques have drawn the attention of many researchers in the machine learning research community. The ultimate goal of these researches is to improve the accuracy of the ensemble compared to the individual classifiers. In this paper, a novel algorithm for building ensembles called dynamic programming-based ensemble design algorithm (DPED) is introduced and studied in detail. The underlying theory behind DPED is based on cooperative game theory in the first phase and applying a dynamic programming approach in the second phase. The main objective of DPED is to reduce the size of the ensemble while encouraging extra diversity in order to improve the accuracy. The performance of the DPED algorithm is compared empirically with the classical ensemble model and with a well-known algorithm called “the most diverse.” The experiments were carried out with 13 datasets from UCI and three ensemble models. Each ensemble model is constructed from 15 different base classifiers. The experimental results demonstrate that DPED outperforms the classical ensembles on all datasets in terms of both accuracy and size of the ensemble. Regarding the comparison with the most diverse algorithm, the number of selected classifiers by DPED across all datasets and all domains is less than or equal to the number selected by the most diverse algorithm. Experiment on blog spam dataset, for instance, shows that DPED provides an accuracy of 96.47 compared to 93.87 obtained by the most diverse using 40% training size. Finally, the experimental results verify the reliability, stability, and effectiveness of the proposed DPED algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R (2018) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit Lett (in press) Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R (2018) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit Lett (in press)
2.
Zurück zum Zitat Abdar M, Makarenkov V (2019) CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement 146:557–570CrossRef Abdar M, Makarenkov V (2019) CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement 146:557–570CrossRef
3.
Zurück zum Zitat Aksela M (2003) Comparison of classifier selection methods for improving committee performance. In: International workshop on multiple classifier systems, Springer Aksela M (2003) Comparison of classifier selection methods for improving committee performance. In: International workshop on multiple classifier systems, Springer
4.
Zurück zum Zitat Alweshah M, Alzubi OA, Alzubi JA, Alaqeel S (2016) Solving attribute reduction problem using wrapper genetic programming. Int J Comput Sci Netw Secur 16(5):77–84 Alweshah M, Alzubi OA, Alzubi JA, Alaqeel S (2016) Solving attribute reduction problem using wrapper genetic programming. Int J Comput Sci Netw Secur 16(5):77–84
5.
Zurück zum Zitat Alzubi JA (2015) Optimal classifier ensemble design based on cooperative game theory. Res J Appl Sci Eng Technol 11(12):1336–1346CrossRef Alzubi JA (2015) Optimal classifier ensemble design based on cooperative game theory. Res J Appl Sci Eng Technol 11(12):1336–1346CrossRef
6.
Zurück zum Zitat Alzubi OA, Alzubi JA, Tedmori S, Rashaideh H, Almomani O (2018) Consensus-based combining method for classifier ensembles. Int Arab J Inf Technol 15(1):76–86 Alzubi OA, Alzubi JA, Tedmori S, Rashaideh H, Almomani O (2018) Consensus-based combining method for classifier ensembles. Int Arab J Inf Technol 15(1):76–86
7.
Zurück zum Zitat Alzubi JA, Kumar A, Alzubi OA, Manikandan R (2019) Efficient approaches for prediction of brain tumor using machine learning techniques. Indian J Public Health Res Dev 10(2):267–272CrossRef Alzubi JA, Kumar A, Alzubi OA, Manikandan R (2019) Efficient approaches for prediction of brain tumor using machine learning techniques. Indian J Public Health Res Dev 10(2):267–272CrossRef
8.
Zurück zum Zitat Andreica MI (2008) A dynamic programming framework for combinatorial optimization problems on graphs with bounded path width Andreica MI (2008) A dynamic programming framework for combinatorial optimization problems on graphs with bounded path width
9.
Zurück zum Zitat Banfield RE, Hall LO, Bowyer KW, Kegelmeyer WP (2003) A new ensemble diversity measure applied to thinning ensembles. In: International workshop on multiple classifier systems, Springer, pp 306–316 Banfield RE, Hall LO, Bowyer KW, Kegelmeyer WP (2003) A new ensemble diversity measure applied to thinning ensembles. In: International workshop on multiple classifier systems, Springer, pp 306–316
11.
Zurück zum Zitat Błaszczyński J, Stefanowski J (2015) Neighborhood sampling in bagging for imbalanced data. Neurocomputing 150:529–542CrossRef Błaszczyński J, Stefanowski J (2015) Neighborhood sampling in bagging for imbalanced data. Neurocomputing 150:529–542CrossRef
12.
Zurück zum Zitat Brown G, Kuncheva LI (2010) “Good” and “Bad” diversity in majority vote ensembles. In: El Gayar N, Kittler J, Roli F (eds) 9th International workshop on multiple classifier systems, MCS 2010, Cairo, Egypt, April 7–9, 2010, Springer, Berlin, pp 124–133 Brown G, Kuncheva LI (2010) “Good” and “Bad” diversity in majority vote ensembles. In: El Gayar N, Kittler J, Roli F (eds) 9th International workshop on multiple classifier systems, MCS 2010, Cairo, Egypt, April 7–9, 2010, Springer, Berlin, pp 124–133
13.
Zurück zum Zitat Canuto AM, Abreu MC, de Melo Oliveira L, Xavier JC, Santos ADM (2007) Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognit Lett 28(4):472–486CrossRef Canuto AM, Abreu MC, de Melo Oliveira L, Xavier JC, Santos ADM (2007) Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognit Lett 28(4):472–486CrossRef
14.
Zurück zum Zitat Chakraborty D, Narayanan V, Ghosh A (2019) Integration of deep feature extraction and ensemble learning for outlier detection. Pattern Recognit 89:161–171CrossRef Chakraborty D, Narayanan V, Ghosh A (2019) Integration of deep feature extraction and ensemble learning for outlier detection. Pattern Recognit 89:161–171CrossRef
15.
Zurück zum Zitat Chen T, Blasco J, Alzubi JA, Alzubi OA (2014) Intrusion detection. IET Digital Library, The Institution of Engineering and Technology Chen T, Blasco J, Alzubi JA, Alzubi OA (2014) Intrusion detection. IET Digital Library, The Institution of Engineering and Technology
17.
Zurück zum Zitat Cohen S, Ruppin E, Dror G (2005) Feature selection based on the Shapley value. In: Proceedings of the 19th international joint conference on artificial intelligence (IJCAI’05), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 665–670 Cohen S, Ruppin E, Dror G (2005) Feature selection based on the Shapley value. In: Proceedings of the 19th international joint conference on artificial intelligence (IJCAI’05), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 665–670
18.
Zurück zum Zitat Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Book name: introduction to algorithm, vol 359 Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Book name: introduction to algorithm, vol 359
19.
Zurück zum Zitat Dai Q (2013) A competitive ensemble pruning approach based on cross-validation technique. Knowl Based Syst 37:394–414CrossRef Dai Q (2013) A competitive ensemble pruning approach based on cross-validation technique. Knowl Based Syst 37:394–414CrossRef
20.
Zurück zum Zitat Dai Q, Han X (2016) An efficient ordering-based ensemble pruning algorithm via dynamic programming. Appl Intell 44(4):816–830MathSciNetCrossRef Dai Q, Han X (2016) An efficient ordering-based ensemble pruning algorithm via dynamic programming. Appl Intell 44(4):816–830MathSciNetCrossRef
21.
Zurück zum Zitat Dreuw P, Deselaers T, Rybach D, Keysers D, Ney H (2006) Tracking using dynamic programming for appearance-based sign language recognition. In: 7th International conference on automatic face and gesture recognition (FGR06), IEEE Dreuw P, Deselaers T, Rybach D, Keysers D, Ney H (2006) Tracking using dynamic programming for appearance-based sign language recognition. In: 7th International conference on automatic face and gesture recognition (FGR06), IEEE
22.
Zurück zum Zitat Erev I, Ert E, Yechiam E (2008) Loss aversion, diminishing sensitivity, and the effect of experience on repeated decisions. J Behav Decis Mak 21(5):575–597CrossRef Erev I, Ert E, Yechiam E (2008) Loss aversion, diminishing sensitivity, and the effect of experience on repeated decisions. J Behav Decis Mak 21(5):575–597CrossRef
23.
Zurück zum Zitat Frank A, Asuncion A (2015) UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA Frank A, Asuncion A (2015) UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA
24.
Zurück zum Zitat Ganjisaffar Y, Caruana R, Lopes CV (2011) Bagging gradient-boosted trees for high precision, low variance ranking models. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval, ACM Ganjisaffar Y, Caruana R, Lopes CV (2011) Bagging gradient-boosted trees for high precision, low variance ranking models. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval, ACM
25.
Zurück zum Zitat Gwet KL (2014) Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters, Advanced Analytics, LLC Gwet KL (2014) Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters, Advanced Analytics, LLC
26.
Zurück zum Zitat Hesterberg T, Monaghan S, Moore D, Clipson A, Epstein R (2003) Bootstrap methods and permutation tests: companion chapter 18 to the practice of business statistics Hesterberg T, Monaghan S, Moore D, Clipson A, Epstein R (2003) Bootstrap methods and permutation tests: companion chapter 18 to the practice of business statistics
27.
Zurück zum Zitat Keinan A, Sandbank B, Hilgetag CC, Meilijson I, Ruppin E (2004) Fair attribution of functional contribution in artificial and biological networks. Neural Comput 16(9):1887–1915MATHCrossRef Keinan A, Sandbank B, Hilgetag CC, Meilijson I, Ruppin E (2004) Fair attribution of functional contribution in artificial and biological networks. Neural Comput 16(9):1887–1915MATHCrossRef
28.
Zurück zum Zitat Ko AR, Sabourin R, de Souza Britto A (2006) Combining diversity and classification accuracy for ensemble selection in random subspaces. In: The 2006 IEEE international joint conference on neural network proceedings, IEEE Ko AR, Sabourin R, de Souza Britto A (2006) Combining diversity and classification accuracy for ensemble selection in random subspaces. In: The 2006 IEEE international joint conference on neural network proceedings, IEEE
29.
Zurück zum Zitat Koohestani A, Abdar M, Khosravi A, Nahavandi S, Koohestani M (2019) Integration of ensemble and evolutionary machine learning algorithms for monitoring diver behavior using physiological signals. IEEE Access 7:98971–98992CrossRef Koohestani A, Abdar M, Khosravi A, Nahavandi S, Koohestani M (2019) Integration of ensemble and evolutionary machine learning algorithms for monitoring diver behavior using physiological signals. IEEE Access 7:98971–98992CrossRef
30.
Zurück zum Zitat Lazarevic A, Obradovic Z (2001) Effective pruning of neural network classifier ensembles. In: Proceedings of IJCNN’01 international joint conference on neural networks, IEEE Lazarevic A, Obradovic Z (2001) Effective pruning of neural network classifier ensembles. In: Proceedings of IJCNN’01 international joint conference on neural networks, IEEE
31.
Zurück zum Zitat Lessmann S, Coussement K, De Bock KW, Haupt J (2019) Targeting customers for profit: an ensemble learning framework to support marketing decision-making. Inf Sci (in press) Lessmann S, Coussement K, De Bock KW, Haupt J (2019) Targeting customers for profit: an ensemble learning framework to support marketing decision-making. Inf Sci (in press)
32.
Zurück zum Zitat Lew A, Mauch H (2006) Dynamic programming: a computational tool. Springer, BerlinMATH Lew A, Mauch H (2006) Dynamic programming: a computational tool. Springer, BerlinMATH
33.
Zurück zum Zitat Li N, Yu Y, Zhou ZH (2012) Diversity regularized ensemble pruning. In: Joint European conference on machine learning and knowledge discovery in databases, Springer, Berlin Li N, Yu Y, Zhou ZH (2012) Diversity regularized ensemble pruning. In: Joint European conference on machine learning and knowledge discovery in databases, Springer, Berlin
34.
Zurück zum Zitat Lysiak R, Kurzynski M, Woloszynski T (2014) Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 126:29–35CrossRef Lysiak R, Kurzynski M, Woloszynski T (2014) Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 126:29–35CrossRef
35.
Zurück zum Zitat Ma W, Liu Y, Yang X (2013) A dynamic programming approach for optimal signal priority control upon multiple high-frequency bus requests. J Intell Transp Syst 17(4): 282–293CrossRef Ma W, Liu Y, Yang X (2013) A dynamic programming approach for optimal signal priority control upon multiple high-frequency bus requests. J Intell Transp Syst 17(4): 282–293CrossRef
36.
Zurück zum Zitat Martınez-Munoz G, Suárez A (2004) Aggregation ordering in bagging. In: Proceedings of the IASTED international conference on artificial intelligence and applications, Citesee Martınez-Munoz G, Suárez A (2004) Aggregation ordering in bagging. In: Proceedings of the IASTED international conference on artificial intelligence and applications, Citesee
37.
Zurück zum Zitat Martinez-Muoz G, Hernández-Lobato D, Suarez A (2009) An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans Pattern Anal Mach Intell 31(2):245–259CrossRef Martinez-Muoz G, Hernández-Lobato D, Suarez A (2009) An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans Pattern Anal Mach Intell 31(2):245–259CrossRef
38.
Zurück zum Zitat Mathur S, Sankaranarayanan L, Mandayam NB (2006) Coalitional games in cooperative radio networks. In: 2006 Fortieth Asilomar conference on signals, systems and computers, IEEE Mathur S, Sankaranarayanan L, Mandayam NB (2006) Coalitional games in cooperative radio networks. In: 2006 Fortieth Asilomar conference on signals, systems and computers, IEEE
39.
Zurück zum Zitat Parvin H, MirnabiBaboli M, Alinejad-Rokny H (2015) Proposing a classifier ensemble framework based on classifier selection and decision tree. Eng Appl Artif Intell 37:34–42CrossRef Parvin H, MirnabiBaboli M, Alinejad-Rokny H (2015) Proposing a classifier ensemble framework based on classifier selection and decision tree. Eng Appl Artif Intell 37:34–42CrossRef
41.
Zurück zum Zitat Rigby AS (2009) Statistical methods in epidemiology. v. Towards an understanding of the kappa coefficient. Disabil Rehabilit Rigby AS (2009) Statistical methods in epidemiology. v. Towards an understanding of the kappa coefficient. Disabil Rehabilit
42.
Zurück zum Zitat Tsoumakas G, Partalas I, Vlahavas I (2009) An ensemble pruning primer. Applications of supervised and unsupervised ensemble methods. Springer, Berlin, pp 1–13CrossRef Tsoumakas G, Partalas I, Vlahavas I (2009) An ensemble pruning primer. Applications of supervised and unsupervised ensemble methods. Springer, Berlin, pp 1–13CrossRef
43.
Zurück zum Zitat Viera AJ, Garrett JM (2005) Understanding inter-observer agreement: the kappa statistic. Fam Med 37(5):360–363 Viera AJ, Garrett JM (2005) Understanding inter-observer agreement: the kappa statistic. Fam Med 37(5):360–363
44.
Zurück zum Zitat Wang Z, Wang Y, Srinivasan RS (2018) A novel ensemble learning approach to support building energy use prediction. Energy Build 159:109–122CrossRef Wang Z, Wang Y, Srinivasan RS (2018) A novel ensemble learning approach to support building energy use prediction. Energy Build 159:109–122CrossRef
45.
Zurück zum Zitat Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196CrossRef Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196CrossRef
46.
Zurück zum Zitat Zhang X, Zhao Z, Zheng J, Li J (2019) Prediction of taxi destinations using a novel data embedding method and ensemble learning. IEEE Trans Intell Transp Syst (in press) Zhang X, Zhao Z, Zheng J, Li J (2019) Prediction of taxi destinations using a novel data embedding method and ensemble learning. IEEE Trans Intell Transp Syst (in press)
Metadaten
Titel
An optimal pruning algorithm of classifier ensembles: dynamic programming approach
verfasst von
Omar A. Alzubi
Jafar A. Alzubi
Mohammed Alweshah
Issa Qiqieh
Sara Al-Shami
Manikandan Ramachandran
Publikationsdatum
23.02.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 20/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04761-6

Weitere Artikel der Ausgabe 20/2020

Neural Computing and Applications 20/2020 Zur Ausgabe

S.I.: Applying Artificial Intelligence to the Internet of Things

Artificial intelligence-based load optimization in cognitive Internet of Things

S.I. : Applying Artificial Intelligence to the Internet of Things

Machine learning and data analytics for the IoT

Recent Advances in Deep Learning for Medical Image Processing

Brain tumor detection: a long short-term memory (LSTM)-based learning model

S.I. : Recent Advances in Deep Learning for Medical Image Processing

Brain tumor detection based on extreme learning

Premium Partner