Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

02.04.2021

An Optimized K-means Clustering for Improving Accuracy in Traffic Classification

verfasst von: Shasha Zhao, Yi Xiao, Yueqiang Ning, Yuxiao Zhou, Dengying Zhang

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the explosive grown network traffic, the traditional port- and payload-based methods are insatiable for the requirements of privacy protection as well as the fast real-time classification for the today traffic classification. Here, a network traffic classification model based on both the Self-Organizing Maps (SOM) and the K-means fusion algorithm is proposed. In which, the traffic data is initially clustered by the SOM network to derive the cluster number and each cluster center value. Then those values are taken as the initial parameters to run the K-means algorithm, achieving optimal classification. As results compared with the traditional K-means algorithm, the initially clustering done by using the SOM network not only inherits its advantages of simple method and efficient processing, but also reduces time cost. Moreover, a significant improvement in coossification accuracy is achieved with our proposed algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nahum, C. V., et al. (2020). Testbed for 5G connected artificial intelligence on virtualized networks. IEEE Access, 8, 223202–223213.CrossRef Nahum, C. V., et al. (2020). Testbed for 5G connected artificial intelligence on virtualized networks. IEEE Access, 8, 223202–223213.CrossRef
2.
Zurück zum Zitat Tzanakaki, A., Anastasopoulos, M., Berberana, I., Syrivelis, D., & Flegkas, P. (2017). Wireless-optical network convergence: Enabling the 5G architecture to support operational and end-user services. IEEE Communications Magazine, 55(10), 184–192.CrossRef Tzanakaki, A., Anastasopoulos, M., Berberana, I., Syrivelis, D., & Flegkas, P. (2017). Wireless-optical network convergence: Enabling the 5G architecture to support operational and end-user services. IEEE Communications Magazine, 55(10), 184–192.CrossRef
3.
Zurück zum Zitat Bu, Z., Zhou, B., Cheng, P., Zhang, K., & Ling, Z. H. (2020). Encrypted network traffic classification using deep and parallel network-in-network models. IEEE Access, 8, 132950–132959.CrossRef Bu, Z., Zhou, B., Cheng, P., Zhang, K., & Ling, Z. H. (2020). Encrypted network traffic classification using deep and parallel network-in-network models. IEEE Access, 8, 132950–132959.CrossRef
4.
Zurück zum Zitat Aceto, G., Ciuonzo, D., Montieri, A., & Pescap, A. (2019). Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Transactions on Network and Service Management, 16(2), 445–458.CrossRef Aceto, G., Ciuonzo, D., Montieri, A., & Pescap, A. (2019). Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Transactions on Network and Service Management, 16(2), 445–458.CrossRef
5.
Zurück zum Zitat Wang, P., Chen, X., Ye, F., & Sun, Z. (2019). A survey of techniques for mobile service encrypted traffic classification using deep learning. IEEE Access, 7, 54024–54033.CrossRef Wang, P., Chen, X., Ye, F., & Sun, Z. (2019). A survey of techniques for mobile service encrypted traffic classification using deep learning. IEEE Access, 7, 54024–54033.CrossRef
6.
Zurück zum Zitat Karagiannis, T., Broido, A., & Faloutsos, M.(2004, Octorber). Transport layer identifification of P2P traffific. Proceedings of Internet Measurement Conference, IEEE. Karagiannis, T., Broido, A., & Faloutsos, M.(2004, Octorber). Transport layer identifification of P2P traffific. Proceedings of Internet Measurement Conference, IEEE.
7.
Zurück zum Zitat Alizadeh, H., & Zquete, A. (2016). Traffic classification for managing applications networking profiles. Security and Communication Networks, 9(14), 2557–2575.CrossRef Alizadeh, H., & Zquete, A. (2016). Traffic classification for managing applications networking profiles. Security and Communication Networks, 9(14), 2557–2575.CrossRef
8.
Zurück zum Zitat Elnawawy, M., Sagahyroon, A., & Shanableh, T. (2020). FPGA-based network traffic classification using machine learning. IEEE Access, 8, 175637–175650.CrossRef Elnawawy, M., Sagahyroon, A., & Shanableh, T. (2020). FPGA-based network traffic classification using machine learning. IEEE Access, 8, 175637–175650.CrossRef
9.
Zurück zum Zitat Pacheco, F., Exposito, E., & Gineste, M. (2019). Towards the deployment of machine learning solutions in network traffic classification: A systematic survey. IEEE Communications Surveys and Tutorials, 21(2), 1988–2014.CrossRef Pacheco, F., Exposito, E., & Gineste, M. (2019). Towards the deployment of machine learning solutions in network traffic classification: A systematic survey. IEEE Communications Surveys and Tutorials, 21(2), 1988–2014.CrossRef
10.
Zurück zum Zitat Moore, A., & Zuev, D.(2005). Internet traffic classification using Bayesian analysis techniques. Proceedings of the 2005 ACM SIGMETRICS international conference on measurement and modeling of computer systems (pp. 50–60). Moore, A., & Zuev, D.(2005). Internet traffic classification using Bayesian analysis techniques. Proceedings of the 2005 ACM SIGMETRICS international conference on measurement and modeling of computer systems (pp. 50–60).
11.
Zurück zum Zitat Auld, T., & Moore, A. (2007). Bayesian neural networks for internet traffic classification. IEEE Transactions on Neural Networks, 18(1), 223–239.CrossRef Auld, T., & Moore, A. (2007). Bayesian neural networks for internet traffic classification. IEEE Transactions on Neural Networks, 18(1), 223–239.CrossRef
12.
Zurück zum Zitat Hao, S. N., Jing, H., & Liu, S. Y.(2015). Improved SVM method for internet traffic classification based on feature weight learning. 2015 international conference on control, automation and information sciences (ICCAIS) (pp. 102–106). Hao, S. N., Jing, H., & Liu, S. Y.(2015). Improved SVM method for internet traffic classification based on feature weight learning. 2015 international conference on control, automation and information sciences (ICCAIS) (pp. 102–106).
13.
Zurück zum Zitat Namdev, N., Agrawal, S., & Silkari, S. (2015). Recent advancement in machine learning based Internet traffic classification. Procedia Computer Science, 60, 784–791.CrossRef Namdev, N., Agrawal, S., & Silkari, S. (2015). Recent advancement in machine learning based Internet traffic classification. Procedia Computer Science, 60, 784–791.CrossRef
14.
Zurück zum Zitat Liu, Y., Li, W., & Li, Y.(2007). Network traffic classification using K-means clustering. In International multi-symposiums on computer & computational sciences. IEEE Computer Society. Liu, Y., Li, W., & Li, Y.(2007). Network traffic classification using K-means clustering. In International multi-symposiums on computer & computational sciences. IEEE Computer Society.
15.
Zurück zum Zitat Jiang, D., Zheng, W., & Lin, X. (2012). Research on selection of initial center points based on improved K-means algorithm. In Proceedings of 2012 2nd international conference on computer science and network technology (pp. 1146–1149). Jiang, D., Zheng, W., & Lin, X. (2012). Research on selection of initial center points based on improved K-means algorithm. In Proceedings of 2012 2nd international conference on computer science and network technology (pp. 1146–1149).
16.
Zurück zum Zitat Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 6–28.CrossRef Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 6–28.CrossRef
17.
Zurück zum Zitat Zou, Y. (2018). Data analysis and processing of massive network traffic based on cloud computing and research on its key algorithms. Wireless Personal Communications, 102, 3159–3170.CrossRef Zou, Y. (2018). Data analysis and processing of massive network traffic based on cloud computing and research on its key algorithms. Wireless Personal Communications, 102, 3159–3170.CrossRef
18.
Zurück zum Zitat Yang, L., Dong, Y., & Rana, M. S. (2018). Fine-grained video traffic classification based on QoE values. Wireless Personal Communications, 103(4), 1481–1498.CrossRef Yang, L., Dong, Y., & Rana, M. S. (2018). Fine-grained video traffic classification based on QoE values. Wireless Personal Communications, 103(4), 1481–1498.CrossRef
19.
Zurück zum Zitat Wang, D., Zhang, H., & Liu, R. (2016). Unsupervised feature selection through Gram–Schmidt orthogonalization. A word co-occurrence perspective. Neurocomputing, 173, 845–854.CrossRef Wang, D., Zhang, H., & Liu, R. (2016). Unsupervised feature selection through Gram–Schmidt orthogonalization. A word co-occurrence perspective. Neurocomputing, 173, 845–854.CrossRef
Metadaten
Titel
An Optimized K-means Clustering for Improving Accuracy in Traffic Classification
verfasst von
Shasha Zhao
Yi Xiao
Yueqiang Ning
Yuxiao Zhou
Dengying Zhang
Publikationsdatum
02.04.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08435-x

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt