Skip to main content
Erschienen in: Meccanica 4/2021

22.02.2021 | Modelling and analysis of mechanical systems dynamics

An original perspective on variable-order fractional operators for viscoelastic materials

verfasst von: Andrea Burlon, Gioacchino Alotta, Mario Di Paola, Giuseppe Failla

Erschienen in: Meccanica | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work deals with viscoelastic constitutive models involving variable-order fractional operators. There exist two main fractional models in the literature representing the stress-strain relation of viscoelastic materials with time-varying mechanical properties. Here, their features are analyzed and the physical assumptions involved are critically discussed. Specifically, it is shown that only one of these fractional models seems to be actually meaningful in the context of viscoelasticity. Then, a novel formulation is discussed, still in the context of variable-order fractional calculus, to effectively compute the strain response of a viscoelastic material with time-dependent mechanical properties due to any stress input. The proposed formulation exhibits a clear physical meaning and is proved to rely on a consistent application of the Boltzmann superposition principle to a fictitious system that is considered, in some sense, equivalent to the original viscoelastic material under study. The main novelty of the paper is to show that the proposed formulation is strictly related to the meaningful fractional model existing in the literature to which, therefore, a sound mechanical meaning can be given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alotta G, Di Paola M, Pirrotta A (2014) Fractional Tajimi-Kanai model for simulating earthquake ground motion. Bull Earthq Eng 12:2495–2506CrossRef Alotta G, Di Paola M, Pirrotta A (2014) Fractional Tajimi-Kanai model for simulating earthquake ground motion. Bull Earthq Eng 12:2495–2506CrossRef
2.
Zurück zum Zitat Di Paola M, Fiore V, Pinnola FP, Valenza A (2014) On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials. Mech Mater 69(1):63–70CrossRef Di Paola M, Fiore V, Pinnola FP, Valenza A (2014) On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials. Mech Mater 69(1):63–70CrossRef
3.
Zurück zum Zitat Di Paola M, Pirrotta A, Valenza A (2011) Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech Mater 43(12):799–806CrossRef Di Paola M, Pirrotta A, Valenza A (2011) Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech Mater 43(12):799–806CrossRef
4.
Zurück zum Zitat Demirci N, Tonuk E (2014) Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation. Acta Bioeng Biomech 16(4):13–21 Demirci N, Tonuk E (2014) Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation. Acta Bioeng Biomech 16(4):13–21
5.
Zurück zum Zitat Guedes RM (2011) A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polym Test 30:294–302CrossRef Guedes RM (2011) A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polym Test 30:294–302CrossRef
6.
Zurück zum Zitat Bagley RL, Torvik PJ (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51:294–298CrossRef Bagley RL, Torvik PJ (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51:294–298CrossRef
7.
Zurück zum Zitat Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155CrossRef Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155CrossRef
8.
Zurück zum Zitat Schiessel H, Metzeler R, Blumen A, Nonnemacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A Math Gen 28:6567–6584CrossRef Schiessel H, Metzeler R, Blumen A, Nonnemacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A Math Gen 28:6567–6584CrossRef
9.
Zurück zum Zitat Enelund M, Mahler L, Runesson K, Josefson BL (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442CrossRef Enelund M, Mahler L, Runesson K, Josefson BL (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442CrossRef
10.
Zurück zum Zitat Fukunaga M, Shimizu N (2013) A high-speed algorithm for computation of fractional differentiation and fractional integration. Philos Trans R Soc A 371:20120152MathSciNetCrossRef Fukunaga M, Shimizu N (2013) A high-speed algorithm for computation of fractional differentiation and fractional integration. Philos Trans R Soc A 371:20120152MathSciNetCrossRef
11.
Zurück zum Zitat Alotta G, Barrera O, Cocks ACF, Di Paola M (2017) On the behavior of a three-dimensional fractional viscoelastic constitutive model. Meccanica 52(9):2127–2142MathSciNetCrossRef Alotta G, Barrera O, Cocks ACF, Di Paola M (2017) On the behavior of a three-dimensional fractional viscoelastic constitutive model. Meccanica 52(9):2127–2142MathSciNetCrossRef
12.
Zurück zum Zitat Alotta G, Di Paola M, Failla G, Pinnola FP (2018) On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos Part B Eng 137:102–110CrossRef Alotta G, Di Paola M, Failla G, Pinnola FP (2018) On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos Part B Eng 137:102–110CrossRef
13.
Zurück zum Zitat Alotta G, Failla G, Zingales M (2017) Finite-element formulation of a nonlocal hereditary fractional-order Timoshenko beam. J Eng Mech 143(5):D4015001CrossRef Alotta G, Failla G, Zingales M (2017) Finite-element formulation of a nonlocal hereditary fractional-order Timoshenko beam. J Eng Mech 143(5):D4015001CrossRef
14.
Zurück zum Zitat Fang C, Shen X, He K, Yin C, Li S, Chen X, Sun H (2020) Application of fractional calculus methods to viscoelastic behaviours of solid propellants. Philos Trans R Soc A 378:20190291MathSciNetCrossRef Fang C, Shen X, He K, Yin C, Li S, Chen X, Sun H (2020) Application of fractional calculus methods to viscoelastic behaviours of solid propellants. Philos Trans R Soc A 378:20190291MathSciNetCrossRef
15.
Zurück zum Zitat Ionescu CM, Birs IR, Copot D, Muresan CI, Caponetto R (2020) Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids. Philos Trans R Soc A 378:20190284MathSciNetCrossRef Ionescu CM, Birs IR, Copot D, Muresan CI, Caponetto R (2020) Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids. Philos Trans R Soc A 378:20190284MathSciNetCrossRef
16.
Zurück zum Zitat Bouras Y, Zorica D, Atanackovic TM, Vrcelj Z (2018) A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. App Math Model 55:551–568MathSciNetCrossRef Bouras Y, Zorica D, Atanackovic TM, Vrcelj Z (2018) A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. App Math Model 55:551–568MathSciNetCrossRef
17.
Zurück zum Zitat Li PuH, Cao L (2017) Variable-order fractional creep model of mudstone under high temperature. Therm Sci 21(1):343–349CrossRef Li PuH, Cao L (2017) Variable-order fractional creep model of mudstone under high temperature. Therm Sci 21(1):343–349CrossRef
18.
Zurück zum Zitat Coimbra CFM (2003) Mechanics with variable-order differential operators. Ann Phys (Leipzig) 12(11–12):692–703MathSciNetCrossRef Coimbra CFM (2003) Mechanics with variable-order differential operators. Ann Phys (Leipzig) 12(11–12):692–703MathSciNetCrossRef
19.
Zurück zum Zitat Soon CM, Coimbra CFM, Kobayashi MH (2005) The variable viscoelasticity oscillator. Ann Phys (Leipzig) 14(6):378–389CrossRef Soon CM, Coimbra CFM, Kobayashi MH (2005) The variable viscoelasticity oscillator. Ann Phys (Leipzig) 14(6):378–389CrossRef
20.
Zurück zum Zitat Ramirez LES, Coimbra CFM (2007) A variable order constitutive relation for viscoelasticity. Ann Phys (Leipzig) 16(7–8):543–552MathSciNetCrossRef Ramirez LES, Coimbra CFM (2007) A variable order constitutive relation for viscoelasticity. Ann Phys (Leipzig) 16(7–8):543–552MathSciNetCrossRef
21.
Zurück zum Zitat Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193:185–192CrossRef Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193:185–192CrossRef
22.
Zurück zum Zitat Alotta G, Colinas-Armijo N (2017) Analysis of fractional viscoelastic material with mechanical parameters dependent on random temperature. ASCE-ASME J Risk Uncertain Eng Syst Part B Mech Eng 3(3):030906CrossRef Alotta G, Colinas-Armijo N (2017) Analysis of fractional viscoelastic material with mechanical parameters dependent on random temperature. ASCE-ASME J Risk Uncertain Eng Syst Part B Mech Eng 3(3):030906CrossRef
23.
Zurück zum Zitat Colinas-Armijo N, Di Paola M, Di Matteo A (2018) Fractional viscoelastic behaviour under stochastic temperature process. Probob Eng Mech 54:37–43CrossRef Colinas-Armijo N, Di Paola M, Di Matteo A (2018) Fractional viscoelastic behaviour under stochastic temperature process. Probob Eng Mech 54:37–43CrossRef
24.
Zurück zum Zitat Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc R Soc A Math Phys Eng Sci 476(2234):20190498MathSciNetMATH Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc R Soc A Math Phys Eng Sci 476(2234):20190498MathSciNetMATH
25.
Zurück zum Zitat Meng R, Yin D, Zhou C, Wu H (2016) Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. App Math Model 40(1):398–406MathSciNetCrossRef Meng R, Yin D, Zhou C, Wu H (2016) Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. App Math Model 40(1):398–406MathSciNetCrossRef
26.
Zurück zum Zitat Meng R, Yin D, Drapaca CS (2019) A variable order fractional constitutive model of the viscoelastic behavior of polymers. Int J Nonlinear Mech 113:171–177CrossRef Meng R, Yin D, Drapaca CS (2019) A variable order fractional constitutive model of the viscoelastic behavior of polymers. Int J Nonlinear Mech 113:171–177CrossRef
27.
Zurück zum Zitat Oeser M, Pellinen T, Scarpas T, Kasbergen C (2008) Studies on creep and recovery of rheological bodies based upon conventional and fractional formulations and their application on asphalt mixture. Int J Pavement Eng 9(5):373–386CrossRef Oeser M, Pellinen T, Scarpas T, Kasbergen C (2008) Studies on creep and recovery of rheological bodies based upon conventional and fractional formulations and their application on asphalt mixture. Int J Pavement Eng 9(5):373–386CrossRef
28.
Zurück zum Zitat Sun HG, Chang A, Zhang Y, Chen W (2019) A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract Calc Appl Anal 22(1):27–59MathSciNetCrossRef Sun HG, Chang A, Zhang Y, Chen W (2019) A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract Calc Appl Anal 22(1):27–59MathSciNetCrossRef
29.
Zurück zum Zitat Di Paola M, Alotta G, Burlon A, Failla G (2020) A novel approach to nonlinear variable-order fractional viscoelasticity. Philos Trans R Soc A 378:2172MathSciNetCrossRef Di Paola M, Alotta G, Burlon A, Failla G (2020) A novel approach to nonlinear variable-order fractional viscoelasticity. Philos Trans R Soc A 378:2172MathSciNetCrossRef
30.
Zurück zum Zitat Podlubny I (1999) Fractional differential equation. Academic Press, San Diego, p 1999 Podlubny I (1999) Fractional differential equation. Academic Press, San Diego, p 1999
31.
Zurück zum Zitat Podlubny I (2000) Matrix approach to discrete fractional calculus. Fract Calc Appl Anal 3(4):359–386MathSciNetMATH Podlubny I (2000) Matrix approach to discrete fractional calculus. Fract Calc Appl Anal 3(4):359–386MathSciNetMATH
32.
Zurück zum Zitat Nutting PG (1921) A new general law of deformation. J Franklin Inst 191:679–685CrossRef Nutting PG (1921) A new general law of deformation. J Franklin Inst 191:679–685CrossRef
33.
Zurück zum Zitat Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Integral Transform Spec Funct 1(4):277–300MathSciNetCrossRef Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Integral Transform Spec Funct 1(4):277–300MathSciNetCrossRef
34.
Zurück zum Zitat Di Paola M, Granata F (2017) Fractional model of concrete hereditary viscoelastic behaviour. Arch Appl Mech 87:335–38CrossRef Di Paola M, Granata F (2017) Fractional model of concrete hereditary viscoelastic behaviour. Arch Appl Mech 87:335–38CrossRef
Metadaten
Titel
An original perspective on variable-order fractional operators for viscoelastic materials
verfasst von
Andrea Burlon
Gioacchino Alotta
Mario Di Paola
Giuseppe Failla
Publikationsdatum
22.02.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2021
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-021-01316-4

Weitere Artikel der Ausgabe 4/2021

Meccanica 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.