Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2024

22.03.2022 | Review Article

An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications

verfasst von: Ashfaq Ahmad, Fawzi Banat, Habiba Alsafar, Shadi W. Hasan

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biodegradable polylactic acid has attracted much attention due to the increasing environmental pollution from petroleum-based plastics. Polylactic acid (PLA) biopolymers can be produced from fermentative lactic acid (LA), which can be obtained via dark fermentation of renewable feedstocks. PLA polymers are a promising alternative that has the potential to replace petroleum-based products. Bio-based degradable polymers have numerous applications in the biomedical field and are used as disposable packaging materials. PLA, however, is a comparatively expensive material to produce, and its mechanical and physical properties are generally inferior to those of petroleum-based plastics. Significant scientific and technical efforts are therefore required to discover, develop, and use polymers that promote social and economic development. Polymerization reactions as well as rheological, mechanical, thermal, and barrier properties influence the performance of PLA polymers. High-end markets have prioritized the commercialization of PLA synthesis from fermentative LA and the improvement of its mechanical and thermal properties. Ring-opening polymerization can be used to synthesize PLA polymers with high molecular weight, which are helpful for both biomaterials and bioplastics applications due to their unique characteristics. This review is intended to contribute to a better understanding and further development of PLA for biomedical and bioplastic applications. It also highlights PLA’s unique biological uses in tissue engineering, wound treatment, drug delivery, and orthopedics.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hamad, K., et al. (2015) Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5) Hamad, K., et al. (2015) Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5)
2.
Zurück zum Zitat Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852CrossRef Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852CrossRef
3.
Zurück zum Zitat Ahmad A, Banat F, Taher H (2020) A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ Technol Innov 20:101138CrossRef Ahmad A, Banat F, Taher H (2020) A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ Technol Innov 20:101138CrossRef
4.
Zurück zum Zitat Qualman, D., Global plastics production, 1917 to 2050. 2017. Qualman, D., Global plastics production, 1917 to 2050. 2017.
5.
Zurück zum Zitat Jem KJ, Tan B (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial Eng Polymer Res 3(2):60–70CrossRef Jem KJ, Tan B (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial Eng Polymer Res 3(2):60–70CrossRef
6.
Zurück zum Zitat Smith M et al (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5(3):375–386CrossRef Smith M et al (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5(3):375–386CrossRef
7.
Zurück zum Zitat Bodansky D (2010) The Copenhagen climate change conference: a postmortem. Am J Int Law 104(2):230–240CrossRef Bodansky D (2010) The Copenhagen climate change conference: a postmortem. Am J Int Law 104(2):230–240CrossRef
8.
Zurück zum Zitat Vaughan, A (2019) UN climate change summit. Elsevier. Vaughan, A (2019) UN climate change summit. Elsevier.
9.
Zurück zum Zitat Plackett, D., Biopolymers: new materials for sustainable films and coatings. 2011: John Wiley & Sons. Plackett, D., Biopolymers: new materials for sustainable films and coatings. 2011: John Wiley & Sons.
10.
Zurück zum Zitat Jem KJ, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. Plastics from bacteria. Springer, pp 323–346CrossRef Jem KJ, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. Plastics from bacteria. Springer, pp 323–346CrossRef
11.
Zurück zum Zitat Ahmad A et al (2021) Lactic acid recovery from date pulp waste fermentation broth by ions exchange resins. Environ Technol Innov 22:101438CrossRef Ahmad A et al (2021) Lactic acid recovery from date pulp waste fermentation broth by ions exchange resins. Environ Technol Innov 22:101438CrossRef
12.
Zurück zum Zitat Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172 Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172
13.
Zurück zum Zitat Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catalysis Reviews 51(3):293–324CrossRef Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catalysis Reviews 51(3):293–324CrossRef
14.
Zurück zum Zitat Philp A, Macdonald AL, Watt PW (2005) Lactate–a signal coordinating cell and systemic function. J Exp Biol 208(24):4561–4575CrossRef Philp A, Macdonald AL, Watt PW (2005) Lactate–a signal coordinating cell and systemic function. J Exp Biol 208(24):4561–4575CrossRef
15.
Zurück zum Zitat Lampe KJ et al (2009) Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells. Biotechnol Bioeng 103(6):1214–1223CrossRef Lampe KJ et al (2009) Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells. Biotechnol Bioeng 103(6):1214–1223CrossRef
16.
Zurück zum Zitat Ahmad A, Banat F, Taher H (2021) Comparative study of lactic acid production from date pulp waste by batch and cyclic–mode dark fermentation. Waste Manage 120:585–593CrossRef Ahmad A, Banat F, Taher H (2021) Comparative study of lactic acid production from date pulp waste by batch and cyclic–mode dark fermentation. Waste Manage 120:585–593CrossRef
17.
Zurück zum Zitat Ashraf, M.T et al. (2020) Enhanced short-chain carboxylic acids yield in dark fermentation by cyclic product removal. Biomass Conversion and Biorefinery. Ashraf, M.T et al. (2020) Enhanced short-chain carboxylic acids yield in dark fermentation by cyclic product removal. Biomass Conversion and Biorefinery.
18.
Zurück zum Zitat Ahmad, A., F. Banat, H. Taher (2020) Enhanced lactic acid production from food waste in dark fermentation with indigenous microbiota. Biomass Conversion and Biorefinery. Ahmad, A., F. Banat, H. Taher (2020) Enhanced lactic acid production from food waste in dark fermentation with indigenous microbiota. Biomass Conversion and Biorefinery.
19.
Zurück zum Zitat de Albuquerque TL et al (2021) Polylactic acid production from biotechnological routes: A review. Int J Biol Macromol 186:933–951CrossRef de Albuquerque TL et al (2021) Polylactic acid production from biotechnological routes: A review. Int J Biol Macromol 186:933–951CrossRef
20.
Zurück zum Zitat Zhao J et al (2013) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12(1):57CrossRef Zhao J et al (2013) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12(1):57CrossRef
21.
Zurück zum Zitat Okano K et al (2009) Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75(2):462–467CrossRef Okano K et al (2009) Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75(2):462–467CrossRef
22.
Zurück zum Zitat Sugiyama M et al (2016) Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae. J Biosci Bioeng 122(4):415–420CrossRef Sugiyama M et al (2016) Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae. J Biosci Bioeng 122(4):415–420CrossRef
23.
Zurück zum Zitat Balla E et al (2021) Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 13(11):1822CrossRef Balla E et al (2021) Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 13(11):1822CrossRef
24.
Zurück zum Zitat Tsuji, H (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications. Wiley. Tsuji, H (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications. Wiley.
25.
Zurück zum Zitat Ahmad A et al (2021) Polymerization of lactic acid produced from food waste by metal oxide-assisted dark fermentation. Environ Technol Innov 24:101862CrossRef Ahmad A et al (2021) Polymerization of lactic acid produced from food waste by metal oxide-assisted dark fermentation. Environ Technol Innov 24:101862CrossRef
26.
Zurück zum Zitat Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). RSC Adv 3(33):13558–13568CrossRef Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). RSC Adv 3(33):13558–13568CrossRef
27.
Zurück zum Zitat Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84CrossRef Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84CrossRef
28.
Zurück zum Zitat Mehta R et al (2005) Synthesis of poly (lactic acid): a review. J Macromol Sci C Polym Rev 45(4):325–349CrossRef Mehta R et al (2005) Synthesis of poly (lactic acid): a review. J Macromol Sci C Polym Rev 45(4):325–349CrossRef
29.
Zurück zum Zitat Henton DE et al (2005) Polylactic acid technology. Natural fibers biopolymers biocomposites 16:527–577 Henton DE et al (2005) Polylactic acid technology. Natural fibers biopolymers biocomposites 16:527–577
30.
Zurück zum Zitat Ajioka M et al (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68(8):2125–2131CrossRef Ajioka M et al (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68(8):2125–2131CrossRef
31.
Zurück zum Zitat Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864CrossRef Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864CrossRef
32.
Zurück zum Zitat Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: An overview. Prog Polym Sci 32(4):455–482CrossRef Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: An overview. Prog Polym Sci 32(4):455–482CrossRef
33.
Zurück zum Zitat Achmad F et al (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151(1):342–350CrossRef Achmad F et al (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151(1):342–350CrossRef
34.
Zurück zum Zitat Cheng Y et al (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4(3):259–264CrossRef Cheng Y et al (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4(3):259–264CrossRef
35.
Zurück zum Zitat Jiménez, A., M. Peltzer, R. Ruseckaite (2014) Poly (lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry. Jiménez, A., M. Peltzer, R. Ruseckaite (2014) Poly (lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry.
36.
Zurück zum Zitat Dutkiewicz S, Grochowska-Łapienis D, Tomaszewski W (2003) Synthesis of poly (L (+) lactic acid) by polycondensation method in solution. Fibres Textiles Eastern Europe 4(43):66–70 Dutkiewicz S, Grochowska-Łapienis D, Tomaszewski W (2003) Synthesis of poly (L (+) lactic acid) by polycondensation method in solution. Fibres Textiles Eastern Europe 4(43):66–70
37.
Zurück zum Zitat Fukushima K, Kimura Y (2008) An efficient solid-state polycondensation method for synthesizing stereocomplexed poly (lactic acid) s with high molecular weight. J Polym Sci Part A Polym Chem 46(11):3714–3722CrossRef Fukushima K, Kimura Y (2008) An efficient solid-state polycondensation method for synthesizing stereocomplexed poly (lactic acid) s with high molecular weight. J Polym Sci Part A Polym Chem 46(11):3714–3722CrossRef
38.
Zurück zum Zitat Gu S et al (2008) Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym Int 57(8):982–986CrossRef Gu S et al (2008) Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym Int 57(8):982–986CrossRef
39.
Zurück zum Zitat Kim E et al (2009) Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening polymerization of lactide to produce polylactide. J Mol Catal A Chem 298(1–2):36–39CrossRef Kim E et al (2009) Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening polymerization of lactide to produce polylactide. J Mol Catal A Chem 298(1–2):36–39CrossRef
40.
Zurück zum Zitat Hu Y et al (2017) Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly (lactic acid) fibre production from food waste. J Clean Prod 165:157–167CrossRef Hu Y et al (2017) Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly (lactic acid) fibre production from food waste. J Clean Prod 165:157–167CrossRef
41.
Zurück zum Zitat Kim KW, Woo SI (2002) Synthesis of High-Molecular-Weight Poly (L-lactic acid) by Direct Polycondensation. Macromol Chem Phys 203(15):2245–2250CrossRef Kim KW, Woo SI (2002) Synthesis of High-Molecular-Weight Poly (L-lactic acid) by Direct Polycondensation. Macromol Chem Phys 203(15):2245–2250CrossRef
42.
Zurück zum Zitat Rahmayetty, et al. (2018) Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production Biocatalysis and Agricultural Biotechnology 16: p. 683 691 Rahmayetty, et al. (2018) Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production Biocatalysis and Agricultural Biotechnology 16: p. 683 691
43.
Zurück zum Zitat Bátori V et al (2018) Anaerobic degradation of bioplastics: A review. Waste Manage 80:406–413CrossRef Bátori V et al (2018) Anaerobic degradation of bioplastics: A review. Waste Manage 80:406–413CrossRef
44.
Zurück zum Zitat Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegradation 117:215–223CrossRef Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegradation 117:215–223CrossRef
45.
Zurück zum Zitat Nurul Fazita MR et al (2016) Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials 9(6):435CrossRef Nurul Fazita MR et al (2016) Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials 9(6):435CrossRef
46.
Zurück zum Zitat Höglund A, Odelius K, Albertsson A-C (2012) Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (L-lactide). ACS Appl Mater Interfaces 4(5):2788–2793CrossRef Höglund A, Odelius K, Albertsson A-C (2012) Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (L-lactide). ACS Appl Mater Interfaces 4(5):2788–2793CrossRef
47.
Zurück zum Zitat Kale G, Auras R, Singh SP (2007) Comparison of the degradability of poly (lactide) packages in composting and ambient exposure conditions. Packag Technol Sci An Int J 20(1):49–70CrossRef Kale G, Auras R, Singh SP (2007) Comparison of the degradability of poly (lactide) packages in composting and ambient exposure conditions. Packag Technol Sci An Int J 20(1):49–70CrossRef
48.
Zurück zum Zitat Itävaara M, Karjomaa S, Selin J-F (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46(6):879–885CrossRef Itävaara M, Karjomaa S, Selin J-F (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46(6):879–885CrossRef
49.
Zurück zum Zitat Gorrasi G., R. Pantani (2017) Hydrolysis and Biodegradation of Poly (lactic acid). Synthesis, Structure and Properties of Poly (lactic acid), p. 119–151. Gorrasi G., R. Pantani (2017) Hydrolysis and Biodegradation of Poly (lactic acid). Synthesis, Structure and Properties of Poly (lactic acid), p. 119–151.
50.
Zurück zum Zitat Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym Degrad Stab 137:122–130CrossRef Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym Degrad Stab 137:122–130CrossRef
51.
Zurück zum Zitat Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly (lactide). Appl Microbiol Biotechnol 72(2):244–251CrossRef Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly (lactide). Appl Microbiol Biotechnol 72(2):244–251CrossRef
52.
Zurück zum Zitat Lomthong T et al (2015) Co-production of poly (L-lactide)-degrading enzyme and raw starch-degrading enzyme by Laceyella sacchari LP175 using agricultural products as substrate, and their efficiency on biodegradation of poly (L-lactide)/thermoplastic starch blend film. Int Biodeterior Biodegradation 104:401–410CrossRef Lomthong T et al (2015) Co-production of poly (L-lactide)-degrading enzyme and raw starch-degrading enzyme by Laceyella sacchari LP175 using agricultural products as substrate, and their efficiency on biodegradation of poly (L-lactide)/thermoplastic starch blend film. Int Biodeterior Biodegradation 104:401–410CrossRef
53.
Zurück zum Zitat Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly (L-lactide)-degrading enzyme induced by amino acids, peptides, and poly (L-amino acids). J Polym Environ 12(3):139–146CrossRef Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly (L-lactide)-degrading enzyme induced by amino acids, peptides, and poly (L-amino acids). J Polym Environ 12(3):139–146CrossRef
54.
Zurück zum Zitat Jarerat A, Tokiwa Y (2001) Degradation of poly (L-lactide) by a fungus. Macromol Biosci 1(4):136–140CrossRef Jarerat A, Tokiwa Y (2001) Degradation of poly (L-lactide) by a fungus. Macromol Biosci 1(4):136–140CrossRef
55.
Zurück zum Zitat Penkhrue W et al (2015) Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J Microbiol Biotechnol 31(9):1431–1442CrossRef Penkhrue W et al (2015) Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J Microbiol Biotechnol 31(9):1431–1442CrossRef
56.
Zurück zum Zitat Apinya T, Sombatsompop N, Prapagdee B (2015) Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms. Int Biodeterior Biodegradation 99:23–30CrossRef Apinya T, Sombatsompop N, Prapagdee B (2015) Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms. Int Biodeterior Biodegradation 99:23–30CrossRef
57.
Zurück zum Zitat Aguirre-Joya JA et al (2018) Basic and applied concepts of edible packaging for foods. Food packaging and preservation. Elsevier, pp 1–61 Aguirre-Joya JA et al (2018) Basic and applied concepts of edible packaging for foods. Food packaging and preservation. Elsevier, pp 1–61
58.
Zurück zum Zitat Saklani P, Das S, Singh S (2019) A review of edible packaging for foods. Int J Curr Microbiol App Sci 8(7):2885–2895CrossRef Saklani P, Das S, Singh S (2019) A review of edible packaging for foods. Int J Curr Microbiol App Sci 8(7):2885–2895CrossRef
59.
Zurück zum Zitat Jeevahan, J., et al. (2018) Waste into energy conversion technologies and conversion of food wastes into the potential products: a review. International Journal of Ambient Energy, p. 1–19. Jeevahan, J., et al. (2018) Waste into energy conversion technologies and conversion of food wastes into the potential products: a review. International Journal of Ambient Energy, p. 1–19.
60.
Zurück zum Zitat Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: A review. J Mater Sci 54(19):12290–12318CrossRef Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: A review. J Mater Sci 54(19):12290–12318CrossRef
61.
Zurück zum Zitat Ahmadi, P., et al. (2020) Development of Ethyl Cellulose-based Formulations: A Perspective on the Novel Technical Methods. Food Reviews International, p. 1–48. Ahmadi, P., et al. (2020) Development of Ethyl Cellulose-based Formulations: A Perspective on the Novel Technical Methods. Food Reviews International, p. 1–48.
62.
Zurück zum Zitat Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: A review. Materials 11(10):1834CrossRef Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: A review. Materials 11(10):1834CrossRef
63.
Zurück zum Zitat Vink ET et al (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419CrossRef Vink ET et al (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419CrossRef
64.
Zurück zum Zitat Fotopoulou KN, Karapanagioti HK (2017) Degradation of various plastics in the environment. Hazardous chemicals associated with plastics in the marine environment. Springer, pp 71–92CrossRef Fotopoulou KN, Karapanagioti HK (2017) Degradation of various plastics in the environment. Hazardous chemicals associated with plastics in the marine environment. Springer, pp 71–92CrossRef
65.
Zurück zum Zitat Wackett LP, Robinson SL (2020) The ever-expanding limits of enzyme catalysis and biodegradation: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochemical Journal 477(15):2875–2891CrossRef Wackett LP, Robinson SL (2020) The ever-expanding limits of enzyme catalysis and biodegradation: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochemical Journal 477(15):2875–2891CrossRef
66.
Zurück zum Zitat Koshti R, Mehta L, Samarth N (2018) Biological recycling of polyethylene terephthalate: a mini-review. J Polym Environ 26(8):3520–3529CrossRef Koshti R, Mehta L, Samarth N (2018) Biological recycling of polyethylene terephthalate: a mini-review. J Polym Environ 26(8):3520–3529CrossRef
67.
Zurück zum Zitat Awaja F, Pavel D (2005) Recycling of PET. Eur Polymer J 41(7):1453–1477CrossRef Awaja F, Pavel D (2005) Recycling of PET. Eur Polymer J 41(7):1453–1477CrossRef
68.
Zurück zum Zitat Mohanty, A.K., et al. (2005) Natural fibers, biopolymers, and biocomposites: an introduction. CRC press. Mohanty, A.K., et al. (2005) Natural fibers, biopolymers, and biocomposites: an introduction. CRC press.
69.
Zurück zum Zitat Wan L et al (2019) Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl methacrylate. Composites Sci Technol 181:107675CrossRef Wan L et al (2019) Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl methacrylate. Composites Sci Technol 181:107675CrossRef
70.
Zurück zum Zitat Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRef Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRef
71.
Zurück zum Zitat Park K, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844CrossRef Park K, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844CrossRef
72.
Zurück zum Zitat Yusoff NH et al (2021) Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J Mol Struct 1232:129954CrossRef Yusoff NH et al (2021) Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J Mol Struct 1232:129954CrossRef
73.
Zurück zum Zitat Jiang T et al (2020) Starch-based biodegradable materials: Challenges and opportunities. Adv Ind Eng Polym Res 3(1):8–18 Jiang T et al (2020) Starch-based biodegradable materials: Challenges and opportunities. Adv Ind Eng Polym Res 3(1):8–18
74.
Zurück zum Zitat Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96CrossRef Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96CrossRef
75.
Zurück zum Zitat Mihai M, Legros N, Alemdar A (2014) Formulation-properties versatility of wood fiber biocomposites based on polylactide and polylactide/thermoplastic starch blends. Polym Eng Sci 54(6):1325–1340CrossRef Mihai M, Legros N, Alemdar A (2014) Formulation-properties versatility of wood fiber biocomposites based on polylactide and polylactide/thermoplastic starch blends. Polym Eng Sci 54(6):1325–1340CrossRef
76.
Zurück zum Zitat Sarasa J, Gracia JM, Javierre C (2009) Study of the biodisintegration of a bioplastic material waste. Biores Technol 100(15):3764–3768CrossRef Sarasa J, Gracia JM, Javierre C (2009) Study of the biodisintegration of a bioplastic material waste. Biores Technol 100(15):3764–3768CrossRef
77.
Zurück zum Zitat Wu CS (2012) Preparation, characterization, and biodegradability of renewable resource-based composites from recycled polylactide bioplastic and sisal fibers. J Appl Polym Sci 123(1):347–355CrossRef Wu CS (2012) Preparation, characterization, and biodegradability of renewable resource-based composites from recycled polylactide bioplastic and sisal fibers. J Appl Polym Sci 123(1):347–355CrossRef
78.
Zurück zum Zitat Doi Y, Steinbüchel A (2002) Biopolymers, Applications and Commercial Products-Polyesters III. Wiley-VCH, Weiheim Doi Y, Steinbüchel A (2002) Biopolymers, Applications and Commercial Products-Polyesters III. Wiley-VCH, Weiheim
79.
Zurück zum Zitat Boey JY et al (2021) A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers 13(10):1544CrossRef Boey JY et al (2021) A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers 13(10):1544CrossRef
80.
Zurück zum Zitat Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34CrossRef Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34CrossRef
81.
Zurück zum Zitat O’brien, F.J. 2011 Biomaterials & scaffolds for tissue engineering. Materials today, 14(3): p. 88–95. O’brien, F.J. 2011 Biomaterials & scaffolds for tissue engineering. Materials today, 14(3): p. 88–95.
82.
Zurück zum Zitat Kanczler J, Oreffo R (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15(2):100–114CrossRef Kanczler J, Oreffo R (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15(2):100–114CrossRef
83.
Zurück zum Zitat Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486CrossRef Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486CrossRef
84.
Zurück zum Zitat Huang L et al (2007) Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28(10):1741–1751CrossRef Huang L et al (2007) Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28(10):1741–1751CrossRef
85.
Zurück zum Zitat Sears NA et al (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310MathSciNetCrossRef Sears NA et al (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310MathSciNetCrossRef
86.
Zurück zum Zitat Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly (L-lactic acid) single crystals. Macromolecules 31(8):2461–2467CrossRef Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly (L-lactic acid) single crystals. Macromolecules 31(8):2461–2467CrossRef
87.
Zurück zum Zitat Zhang Q et al (2011) Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32(1):87–94CrossRef Zhang Q et al (2011) Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32(1):87–94CrossRef
88.
Zurück zum Zitat Iwasa J et al (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17(6):561–577CrossRef Iwasa J et al (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17(6):561–577CrossRef
89.
Zurück zum Zitat Teixeira BN et al (2019) Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater 107(1):37–49CrossRef Teixeira BN et al (2019) Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater 107(1):37–49CrossRef
90.
Zurück zum Zitat Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef
91.
Zurück zum Zitat Yamane H, Sasai K (2003) Effect of the addition of poly (D-lactic acid) on the thermal property of poly (L-lactic acid). Polymer 44(8):2569–2575CrossRef Yamane H, Sasai K (2003) Effect of the addition of poly (D-lactic acid) on the thermal property of poly (L-lactic acid). Polymer 44(8):2569–2575CrossRef
92.
Zurück zum Zitat Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846CrossRef Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846CrossRef
93.
Zurück zum Zitat Dürselen L et al (2001) Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res 58(6):666–672CrossRef Dürselen L et al (2001) Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res 58(6):666–672CrossRef
94.
Zurück zum Zitat Shomura Y et al (2009) Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability. Acta Radiol 50(4):355–359CrossRef Shomura Y et al (2009) Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability. Acta Radiol 50(4):355–359CrossRef
95.
Zurück zum Zitat Coutu DL, Yousefi AM, Galipeau J (2009) Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J Cell Biochem 108(3):537–546CrossRef Coutu DL, Yousefi AM, Galipeau J (2009) Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J Cell Biochem 108(3):537–546CrossRef
96.
Zurück zum Zitat Kellomäki M et al (2000) Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials 21(24):2495–2505CrossRef Kellomäki M et al (2000) Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials 21(24):2495–2505CrossRef
97.
Zurück zum Zitat Papenburg BJ et al (2009) Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials 30(31):6228–6239CrossRef Papenburg BJ et al (2009) Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials 30(31):6228–6239CrossRef
98.
Zurück zum Zitat Behonick DJ et al (2007) Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PloS one 2(11):e1150CrossRef Behonick DJ et al (2007) Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PloS one 2(11):e1150CrossRef
99.
Zurück zum Zitat Caplan AI (2009) New era of cell-based orthopedic therapies. Tissue Eng Part B Rev 15(2):195–200CrossRef Caplan AI (2009) New era of cell-based orthopedic therapies. Tissue Eng Part B Rev 15(2):195–200CrossRef
100.
Zurück zum Zitat Yagihara K et al (2013) Mandibular reconstruction using a poly (L-lactide) mesh combined with autogenous particulate cancellous bone and marrow: a prospective clinical study. Int J Oral Maxillofac Surg 42(8):962–969CrossRef Yagihara K et al (2013) Mandibular reconstruction using a poly (L-lactide) mesh combined with autogenous particulate cancellous bone and marrow: a prospective clinical study. Int J Oral Maxillofac Surg 42(8):962–969CrossRef
101.
Zurück zum Zitat Eppley BL et al (2004) Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 114(4):850–856CrossRef Eppley BL et al (2004) Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 114(4):850–856CrossRef
102.
Zurück zum Zitat Imola MJ, Schramm VL (2002) Resorbable internal fixation in pediatric cranial base surgery. Laryngoscope 112(10):1897–1901CrossRef Imola MJ, Schramm VL (2002) Resorbable internal fixation in pediatric cranial base surgery. Laryngoscope 112(10):1897–1901CrossRef
103.
Zurück zum Zitat Dong Y, Feng SS (2006) Nanoparticles of poly(D, L-lactide)/methoxy poly(ethylene glycol)-poly(D, L-lactide) blends for controlled release of paclitaxel. J Biomed Mater Res A 78(1):12–19CrossRef Dong Y, Feng SS (2006) Nanoparticles of poly(D, L-lactide)/methoxy poly(ethylene glycol)-poly(D, L-lactide) blends for controlled release of paclitaxel. J Biomed Mater Res A 78(1):12–19CrossRef
104.
Zurück zum Zitat Pan J, Feng SS (2008) Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials 29(17):2663–2672CrossRef Pan J, Feng SS (2008) Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials 29(17):2663–2672CrossRef
105.
Zurück zum Zitat Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822CrossRef Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822CrossRef
106.
Zurück zum Zitat Dixit S et al (2018) Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly (lactic acid)-Poly (ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells. Biomaterials 159:130–145CrossRef Dixit S et al (2018) Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly (lactic acid)-Poly (ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells. Biomaterials 159:130–145CrossRef
107.
Zurück zum Zitat Varga N et al (2019) The effect of synthesis conditions and tunable hydrophilicity on the drug encapsulation capability of PLA and PLGA nanoparticles. Colloids Surf B 176:212–218CrossRef Varga N et al (2019) The effect of synthesis conditions and tunable hydrophilicity on the drug encapsulation capability of PLA and PLGA nanoparticles. Colloids Surf B 176:212–218CrossRef
108.
Zurück zum Zitat Chen S et al (2018) Modified poly (L-lactic acid) microspheres with nanofibrous structure suitable for biomedical application. Int J Polym Mater Polym Biomater 67(9):572–580CrossRef Chen S et al (2018) Modified poly (L-lactic acid) microspheres with nanofibrous structure suitable for biomedical application. Int J Polym Mater Polym Biomater 67(9):572–580CrossRef
109.
Zurück zum Zitat Xin X, Guan YX, Yao SJ (2018) Sustained release of dexamethasone from drug-loading PLGA scaffolds with specific pore structure fabricated by supercritical CO2 foaming. J Appl Polym Sci 135(17):46207CrossRef Xin X, Guan YX, Yao SJ (2018) Sustained release of dexamethasone from drug-loading PLGA scaffolds with specific pore structure fabricated by supercritical CO2 foaming. J Appl Polym Sci 135(17):46207CrossRef
110.
Zurück zum Zitat Giammona G., E.F. Craparo (2018) Biomedical applications of polylactide (PLA) and its copolymers. Multidisciplinary Digital Publishing Institute. Giammona G., E.F. Craparo (2018) Biomedical applications of polylactide (PLA) and its copolymers. Multidisciplinary Digital Publishing Institute.
111.
Zurück zum Zitat Sharif F et al (2019) Bioresorbable antibacterial PCL-PLA-nHA composite membranes for oral and maxillofacial defects. Polym Compos 40(4):1564–1575MathSciNetCrossRef Sharif F et al (2019) Bioresorbable antibacterial PCL-PLA-nHA composite membranes for oral and maxillofacial defects. Polym Compos 40(4):1564–1575MathSciNetCrossRef
112.
Zurück zum Zitat Sun S et al (2018) Preparation of highly interconnected porous poly (ε-caprolactone)/poly (lactic acid) scaffolds via supercritical foaming. Polym Adv Technol 29(12):3065–3074CrossRef Sun S et al (2018) Preparation of highly interconnected porous poly (ε-caprolactone)/poly (lactic acid) scaffolds via supercritical foaming. Polym Adv Technol 29(12):3065–3074CrossRef
113.
Zurück zum Zitat Shin DY et al (2018) In vitro and in vivo evaluation of polylactic acid-based composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration. J Biomater Appl 32(10):1360–1370CrossRef Shin DY et al (2018) In vitro and in vivo evaluation of polylactic acid-based composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration. J Biomater Appl 32(10):1360–1370CrossRef
114.
Zurück zum Zitat Farzamfar S et al (2019) Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. Int J Polym Mater Polym Biomater 68(8):472–479CrossRef Farzamfar S et al (2019) Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. Int J Polym Mater Polym Biomater 68(8):472–479CrossRef
115.
Zurück zum Zitat Zhao J et al (2012) Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 33(6):1948–1958CrossRef Zhao J et al (2012) Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 33(6):1948–1958CrossRef
116.
Zurück zum Zitat Cheng CJ et al (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247CrossRef Cheng CJ et al (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247CrossRef
117.
Zurück zum Zitat Kamaly N et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010CrossRef Kamaly N et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010CrossRef
118.
Zurück zum Zitat Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003CrossRef Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003CrossRef
119.
Zurück zum Zitat Yu Y et al (2014) Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromol 15(2):524–532CrossRef Yu Y et al (2014) Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromol 15(2):524–532CrossRef
120.
Zurück zum Zitat Kluge J, Mazzotti M, Muhrer G (2010) Solubility of Ketoprofen in colloidal PLGA. Int J Pharm 399(1):163–172CrossRef Kluge J, Mazzotti M, Muhrer G (2010) Solubility of Ketoprofen in colloidal PLGA. Int J Pharm 399(1):163–172CrossRef
121.
Zurück zum Zitat Ahmad H et al (2019) PLGA scaffolds: building blocks for new age therapeutics. Materials for Biomedical Engineering. Elsevier, pp 155–201CrossRef Ahmad H et al (2019) PLGA scaffolds: building blocks for new age therapeutics. Materials for Biomedical Engineering. Elsevier, pp 155–201CrossRef
122.
Zurück zum Zitat Wang Z et al (2020) Development and in vitro characterization of rifapentine microsphere-loaded bone implants: a sustained drug delivery system. Annals of palliative medicine 9(2):375–387MathSciNetCrossRef Wang Z et al (2020) Development and in vitro characterization of rifapentine microsphere-loaded bone implants: a sustained drug delivery system. Annals of palliative medicine 9(2):375–387MathSciNetCrossRef
123.
Zurück zum Zitat Kareem MM et al (2019) Hybrid core–shell scaffolds for bone tissue engineering. Biomed Mater 14(2):025008CrossRef Kareem MM et al (2019) Hybrid core–shell scaffolds for bone tissue engineering. Biomed Mater 14(2):025008CrossRef
124.
Zurück zum Zitat Liu R et al (2018) Long-term delivery of rhIGF-1 from biodegradable poly(lactic acid)/hydroxyapatite@Eudragit double-layer microspheres for prevention of bone loss and articular degeneration in C57BL/6 mice. J Mater Chem B 6(19):3085–3095CrossRef Liu R et al (2018) Long-term delivery of rhIGF-1 from biodegradable poly(lactic acid)/hydroxyapatite@Eudragit double-layer microspheres for prevention of bone loss and articular degeneration in C57BL/6 mice. J Mater Chem B 6(19):3085–3095CrossRef
125.
Zurück zum Zitat Ye K et al (2019) Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 534:625–636CrossRef Ye K et al (2019) Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 534:625–636CrossRef
126.
Zurück zum Zitat Romanova OA et al (2019) Non-woven bilayered biodegradable chitosan-gelatin-polylactide scaffold for bioengineering of tracheal epithelium. Cell prolif 52(3):e12598CrossRef Romanova OA et al (2019) Non-woven bilayered biodegradable chitosan-gelatin-polylactide scaffold for bioengineering of tracheal epithelium. Cell prolif 52(3):e12598CrossRef
127.
Zurück zum Zitat Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193CrossRef Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193CrossRef
128.
Zurück zum Zitat Valantin M-A et al (2003) Polylactic acid implants (New-Fill)® to correct facial lipoatrophy in HIV-infected patients: results of the open-label study VEGA. AIDS 17(17):2471–2477CrossRef Valantin M-A et al (2003) Polylactic acid implants (New-Fill)® to correct facial lipoatrophy in HIV-infected patients: results of the open-label study VEGA. AIDS 17(17):2471–2477CrossRef
129.
Zurück zum Zitat Oltean-Dan D et al (2019) Enhancement of bone consolidation using high-frequency pulsed electromagnetic short-waves and titanium implants coated with biomimetic composite embedded into PLA matrix: in vivo evaluation. Int J Nanomed 14:5799CrossRef Oltean-Dan D et al (2019) Enhancement of bone consolidation using high-frequency pulsed electromagnetic short-waves and titanium implants coated with biomimetic composite embedded into PLA matrix: in vivo evaluation. Int J Nanomed 14:5799CrossRef
130.
Zurück zum Zitat Tanodekaew S, Channasanon S, Kaewkong P (2019) Heat-curing polylactide for bone implants: Preparation and investigation on properties relevant to degradation. J Bioact Compat Polym 34(6):464–478CrossRef Tanodekaew S, Channasanon S, Kaewkong P (2019) Heat-curing polylactide for bone implants: Preparation and investigation on properties relevant to degradation. J Bioact Compat Polym 34(6):464–478CrossRef
131.
Zurück zum Zitat Martin V et al (2019) Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng, C 101:15–26CrossRef Martin V et al (2019) Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng, C 101:15–26CrossRef
132.
Zurück zum Zitat Ramesh N, Moratti SC, Dias GJ (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater 106(5):2046–2057CrossRef Ramesh N, Moratti SC, Dias GJ (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater 106(5):2046–2057CrossRef
133.
Zurück zum Zitat Yang C et al (2018) Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 8(2):464CrossRef Yang C et al (2018) Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 8(2):464CrossRef
134.
Zurück zum Zitat Zahid S et al (2019) Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Mater Sci Eng C 101:438–447CrossRef Zahid S et al (2019) Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Mater Sci Eng C 101:438–447CrossRef
135.
Zurück zum Zitat Dwivedi A, Mazumder A, Nasongkla N (2018) Layer-by-layer nanocoating of antibacterial niosome on orthopedic implant. Int J Pharm 547(1–2):235–243CrossRef Dwivedi A, Mazumder A, Nasongkla N (2018) Layer-by-layer nanocoating of antibacterial niosome on orthopedic implant. Int J Pharm 547(1–2):235–243CrossRef
136.
Zurück zum Zitat Thomas NG et al (2011) Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction. J Indian Soc Periodontol 15(3):260CrossRef Thomas NG et al (2011) Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction. J Indian Soc Periodontol 15(3):260CrossRef
137.
Zurück zum Zitat Tomlin EM, Nelson SJ, Rossmann JA (2014) Suppl 1: Ridge preservation for implant therapy: A review of the literature. Open Dent J 8:66CrossRef Tomlin EM, Nelson SJ, Rossmann JA (2014) Suppl 1: Ridge preservation for implant therapy: A review of the literature. Open Dent J 8:66CrossRef
138.
Zurück zum Zitat Abasian P et al (2019) Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro. Int J Biol Macromol 121:398–406CrossRef Abasian P et al (2019) Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro. Int J Biol Macromol 121:398–406CrossRef
139.
Zurück zum Zitat Mohideen M et al (2017) Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir. Biomaterials 144:144–154CrossRef Mohideen M et al (2017) Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir. Biomaterials 144:144–154CrossRef
140.
Zurück zum Zitat Qin SY, Zhang AQ, Zhang XZ (2018) Recent advances in targeted tumor chemotherapy based on smart nanomedicines. Small 14(45):1802417CrossRef Qin SY, Zhang AQ, Zhang XZ (2018) Recent advances in targeted tumor chemotherapy based on smart nanomedicines. Small 14(45):1802417CrossRef
141.
Zurück zum Zitat Wachtel M, Schäfer BW (2010) Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev 36(4):318–327CrossRef Wachtel M, Schäfer BW (2010) Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev 36(4):318–327CrossRef
142.
Zurück zum Zitat Zeng X et al (2017) Polydopamine-based surface modification of copolymeric nanoparticles as a targeted drug delivery system for cancer therapy. J Control Release 259:e150–e151CrossRef Zeng X et al (2017) Polydopamine-based surface modification of copolymeric nanoparticles as a targeted drug delivery system for cancer therapy. J Control Release 259:e150–e151CrossRef
143.
Zurück zum Zitat Wang YR et al (2018) Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo. Biochem Biophys Res Commun 499(1):8–16CrossRef Wang YR et al (2018) Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo. Biochem Biophys Res Commun 499(1):8–16CrossRef
144.
Zurück zum Zitat Householder KT et al (2015) Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 479(2):374–380CrossRef Householder KT et al (2015) Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 479(2):374–380CrossRef
145.
Zurück zum Zitat Chen, D.X., Chen, Glaser (2019) Extrusion bioprinting of scaffolds for tissue engineering applications.: Springer. Chen, D.X., Chen, Glaser (2019) Extrusion bioprinting of scaffolds for tissue engineering applications.: Springer.
146.
Zurück zum Zitat Qu M et al (2019) Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe2O3 microspheres for cell carriers. J Biomed Mater Res B Appl Biomater 107(3):511–520CrossRef Qu M et al (2019) Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe2O3 microspheres for cell carriers. J Biomed Mater Res B Appl Biomater 107(3):511–520CrossRef
147.
Zurück zum Zitat Zhu D et al (2016) Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–154CrossRef Zhu D et al (2016) Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–154CrossRef
148.
Zurück zum Zitat Jelonek K et al (2019) Dual-targeted biodegradable micelles for anticancer drug delivery. Mater Lett 241:187–189CrossRef Jelonek K et al (2019) Dual-targeted biodegradable micelles for anticancer drug delivery. Mater Lett 241:187–189CrossRef
149.
Zurück zum Zitat Li W et al (2018) Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery. Mater Sci Eng C 91:688–695CrossRef Li W et al (2018) Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery. Mater Sci Eng C 91:688–695CrossRef
150.
Zurück zum Zitat Jain DS et al (2013) Poly lactic acid (PLA) nanoparticles sustain the cytotoxic action of temozolomide in C6 Glioma cells. Biomed Aging Pathol 3(4):201–208CrossRef Jain DS et al (2013) Poly lactic acid (PLA) nanoparticles sustain the cytotoxic action of temozolomide in C6 Glioma cells. Biomed Aging Pathol 3(4):201–208CrossRef
151.
Zurück zum Zitat Zhong Y et al (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromol 15(6):1955–1969CrossRef Zhong Y et al (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromol 15(6):1955–1969CrossRef
152.
Zurück zum Zitat Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16CrossRef Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16CrossRef
153.
Zurück zum Zitat Sim T et al (2018) Development of a docetaxel micellar formulation using poly (ethylene glycol)–polylactide–poly (ethylene glycol)(PEG–PLA–PEG) with successful reconstitution for tumor targeted drug delivery. Drug Delivery 25(1):1362–1371CrossRef Sim T et al (2018) Development of a docetaxel micellar formulation using poly (ethylene glycol)–polylactide–poly (ethylene glycol)(PEG–PLA–PEG) with successful reconstitution for tumor targeted drug delivery. Drug Delivery 25(1):1362–1371CrossRef
154.
Zurück zum Zitat Michaelis M et al (2000) Bovine seminal ribonuclease attached to nanoparticles made of polylactic acid kills leukemia and lymphoma cell lines in vitro. Anticancer Drugs 11(5):369–376CrossRef Michaelis M et al (2000) Bovine seminal ribonuclease attached to nanoparticles made of polylactic acid kills leukemia and lymphoma cell lines in vitro. Anticancer Drugs 11(5):369–376CrossRef
155.
Zurück zum Zitat Lv G et al (2008) Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 24(5):2151–2156CrossRef Lv G et al (2008) Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 24(5):2151–2156CrossRef
156.
Zurück zum Zitat Li J et al (2018) Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci 109(6):1958–1969CrossRef Li J et al (2018) Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci 109(6):1958–1969CrossRef
157.
Zurück zum Zitat Ramachandran R et al (2017) Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep 7(1):1–16CrossRef Ramachandran R et al (2017) Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep 7(1):1–16CrossRef
158.
Zurück zum Zitat Liu S et al (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos B Eng 136:197–214CrossRef Liu S et al (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos B Eng 136:197–214CrossRef
159.
Zurück zum Zitat Buzarovska A et al (2018) Porous poly (L-lactic acid) nanocomposite scaffolds with functionalized TiO 2 nanoparticles: Properties, cytocompatibility and drug release capability. J Mater Sci 53(16):11151–11166CrossRef Buzarovska A et al (2018) Porous poly (L-lactic acid) nanocomposite scaffolds with functionalized TiO 2 nanoparticles: Properties, cytocompatibility and drug release capability. J Mater Sci 53(16):11151–11166CrossRef
160.
Zurück zum Zitat Wilberforce SI et al (2011) A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites. Acta Biomater 7(5):2176–2184CrossRef Wilberforce SI et al (2011) A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites. Acta Biomater 7(5):2176–2184CrossRef
161.
Zurück zum Zitat Kim S-S et al (2006) Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409CrossRef Kim S-S et al (2006) Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409CrossRef
162.
Zurück zum Zitat Mantsos T et al (2009) Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly (D, L-lactic acid) coatings. Biomed Mater 4(5):055002CrossRef Mantsos T et al (2009) Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly (D, L-lactic acid) coatings. Biomed Mater 4(5):055002CrossRef
163.
Zurück zum Zitat Armentano I et al (2011) Novel poly (L-lactide) PLLA/SWNTs nanocomposites for biomedical applications: material characterization and biocompatibility evaluation. J Biomater Sci Polym Ed 22(4–6):541–556CrossRef Armentano I et al (2011) Novel poly (L-lactide) PLLA/SWNTs nanocomposites for biomedical applications: material characterization and biocompatibility evaluation. J Biomater Sci Polym Ed 22(4–6):541–556CrossRef
164.
Zurück zum Zitat Sun J et al (2018) Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers 10(5):505CrossRef Sun J et al (2018) Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers 10(5):505CrossRef
165.
Zurück zum Zitat Musto P et al (2019) Morphology, molecular interactions and H2O diffusion in a poly (lactic-acid)/graphene composite: A vibrational spectroscopy study. Spectrochim Acta Part A Mol Biomol Spectrosc 218:40–50CrossRef Musto P et al (2019) Morphology, molecular interactions and H2O diffusion in a poly (lactic-acid)/graphene composite: A vibrational spectroscopy study. Spectrochim Acta Part A Mol Biomol Spectrosc 218:40–50CrossRef
166.
Zurück zum Zitat Liu S et al (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. RSC Adv 4(36):18652–18659CrossRef Liu S et al (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. RSC Adv 4(36):18652–18659CrossRef
167.
Zurück zum Zitat Liu S et al (2014) Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos Sci Technol 90:40–47CrossRef Liu S et al (2014) Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos Sci Technol 90:40–47CrossRef
168.
Zurück zum Zitat Liu S et al (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A Appl Sci Manuf 89:26–32CrossRef Liu S et al (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A Appl Sci Manuf 89:26–32CrossRef
169.
Zurück zum Zitat Zhou Y, Jing X, Chen Y (2017) Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. J Mater Chem B 5(32):6451–6470CrossRef Zhou Y, Jing X, Chen Y (2017) Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. J Mater Chem B 5(32):6451–6470CrossRef
170.
Zurück zum Zitat Malladi L, Mahapatro A, Gomes AS (2018) Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Mater Technol 33(2):173–182CrossRef Malladi L, Mahapatro A, Gomes AS (2018) Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Mater Technol 33(2):173–182CrossRef
171.
Zurück zum Zitat Hu H et al (2018) Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly (lactic-co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Appl Mater Interfaces 10(27):22939–22950CrossRef Hu H et al (2018) Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly (lactic-co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Appl Mater Interfaces 10(27):22939–22950CrossRef
172.
Zurück zum Zitat Dai X et al (2018) Zeolitic imidazole framework/graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: a promising environmentally friendly water treatment material. ACS Omega 3(6):6860–6866CrossRef Dai X et al (2018) Zeolitic imidazole framework/graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: a promising environmentally friendly water treatment material. ACS Omega 3(6):6860–6866CrossRef
173.
Zurück zum Zitat Ma S et al (2019) Enhanced osteoinduction of electrospun scaffolds with assemblies of hematite nanoparticles as a bioactive interface. Int J Nanomed 14:1051CrossRef Ma S et al (2019) Enhanced osteoinduction of electrospun scaffolds with assemblies of hematite nanoparticles as a bioactive interface. Int J Nanomed 14:1051CrossRef
174.
Zurück zum Zitat Arora B, Bhatia R, Attri P (2018) Bionanocomposites: green materials for a sustainable future. New Polymer Nanocomposites for Environmental Remediation. Elsevier, pp 699–712 Arora B, Bhatia R, Attri P (2018) Bionanocomposites: green materials for a sustainable future. New Polymer Nanocomposites for Environmental Remediation. Elsevier, pp 699–712
175.
Zurück zum Zitat Mousa HM et al (2018) A multifunctional zinc oxide/poly (lactic acid) nanocomposite layer coated on magnesium alloys for controlled degradation and antibacterial function. ACS Biomater Sci Eng 4(6):2169–2180CrossRef Mousa HM et al (2018) A multifunctional zinc oxide/poly (lactic acid) nanocomposite layer coated on magnesium alloys for controlled degradation and antibacterial function. ACS Biomater Sci Eng 4(6):2169–2180CrossRef
176.
Zurück zum Zitat Kim JF et al (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE J 62(2):461–490MathSciNetCrossRef Kim JF et al (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE J 62(2):461–490MathSciNetCrossRef
177.
Zurück zum Zitat George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45CrossRef George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45CrossRef
178.
Zurück zum Zitat Borkotoky SS, Dhar P, Katiyar V (2018) Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446CrossRef Borkotoky SS, Dhar P, Katiyar V (2018) Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446CrossRef
179.
Zurück zum Zitat Zhou L et al (2018) Enhancing mechanical properties of poly (lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind Crops Prod 112:449–459CrossRef Zhou L et al (2018) Enhancing mechanical properties of poly (lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind Crops Prod 112:449–459CrossRef
180.
Zurück zum Zitat Iqbal N et al (2019) Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. Int Mater Rev 64(2):91–126CrossRef Iqbal N et al (2019) Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. Int Mater Rev 64(2):91–126CrossRef
181.
Zurück zum Zitat Yin Y et al (2018) Cellulose nanocrystals modified with a triazine derivative and their reinforcement of poly (lactic acid)-based bionanocomposites. Cellulose 25(5):2965–2976MathSciNetCrossRef Yin Y et al (2018) Cellulose nanocrystals modified with a triazine derivative and their reinforcement of poly (lactic acid)-based bionanocomposites. Cellulose 25(5):2965–2976MathSciNetCrossRef
182.
Zurück zum Zitat Mao D et al (2018) Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr Polym 180:104–111CrossRef Mao D et al (2018) Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr Polym 180:104–111CrossRef
183.
Zurück zum Zitat Jash A, Lim L-T (2018) Triggered release of hexanal from an imidazolidine precursor encapsulated in poly (lactic acid) and ethylcellulose carriers. J Mater Sci 53(3):2221–2235CrossRef Jash A, Lim L-T (2018) Triggered release of hexanal from an imidazolidine precursor encapsulated in poly (lactic acid) and ethylcellulose carriers. J Mater Sci 53(3):2221–2235CrossRef
184.
Zurück zum Zitat Robles E et al (2018) Assessment of physical properties of self-bonded composites made of cellulose nanofibrils and poly (lactic acid) microfibrils. Cellulose 25(6):3393–3405CrossRef Robles E et al (2018) Assessment of physical properties of self-bonded composites made of cellulose nanofibrils and poly (lactic acid) microfibrils. Cellulose 25(6):3393–3405CrossRef
185.
Zurück zum Zitat Shojaeiarani J et al (2019) Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Compos B Eng 161:483–489CrossRef Shojaeiarani J et al (2019) Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Compos B Eng 161:483–489CrossRef
186.
Zurück zum Zitat Mane S (2016) Effect of porogens (type and amount) on polymer porosity: a review. Can Chem Trans 4(2):210–225MathSciNet Mane S (2016) Effect of porogens (type and amount) on polymer porosity: a review. Can Chem Trans 4(2):210–225MathSciNet
187.
Zurück zum Zitat Wang Z et al (2019) Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. Int J Biol Macromol 129:878–886CrossRef Wang Z et al (2019) Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. Int J Biol Macromol 129:878–886CrossRef
188.
Zurück zum Zitat Yin X et al (2018) Simultaneous enhancement of toughness, strength and superhydrophilicity of solvent-free microcrystalline cellulose fluids/poly (lactic acid) fibers fabricated via electrospinning approach. Compos Sci Technol 167:190–198CrossRef Yin X et al (2018) Simultaneous enhancement of toughness, strength and superhydrophilicity of solvent-free microcrystalline cellulose fluids/poly (lactic acid) fibers fabricated via electrospinning approach. Compos Sci Technol 167:190–198CrossRef
189.
Zurück zum Zitat Li Y et al (2018) Crystallization behaviors of poly (lactic acid) composites fabricated using functionalized eggshell powder and poly (ethylene glycol). Thermochim Acta 663:67–76CrossRef Li Y et al (2018) Crystallization behaviors of poly (lactic acid) composites fabricated using functionalized eggshell powder and poly (ethylene glycol). Thermochim Acta 663:67–76CrossRef
190.
Zurück zum Zitat Wu X et al (2017) A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. J Mater Chem B 5(17):3084–3102CrossRef Wu X et al (2017) A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. J Mater Chem B 5(17):3084–3102CrossRef
191.
Zurück zum Zitat Sayyar S, Officer DL, Wallace GG (2017) Fabrication of 3D structures from graphene-based biocomposites. J Mater Chem B 5(19):3462–3482CrossRef Sayyar S, Officer DL, Wallace GG (2017) Fabrication of 3D structures from graphene-based biocomposites. J Mater Chem B 5(19):3462–3482CrossRef
192.
Zurück zum Zitat Türk M, Deliormanlı AM (2018) Graphene-containing PCL-coated porous 13–93B3 bioactive glass scaffolds for bone regeneration. Mater Res Express 5(4):045406CrossRef Türk M, Deliormanlı AM (2018) Graphene-containing PCL-coated porous 13–93B3 bioactive glass scaffolds for bone regeneration. Mater Res Express 5(4):045406CrossRef
193.
Zurück zum Zitat Thummarungsan N et al (2018) Influence of graphene on electromechanical responses of plasticized poly (lactic acid). Polymer 138:169–179CrossRef Thummarungsan N et al (2018) Influence of graphene on electromechanical responses of plasticized poly (lactic acid). Polymer 138:169–179CrossRef
194.
Zurück zum Zitat Wu D et al (2018) Nano-graphene oxide functionalized bioactive poly (lactic acid) and poly (ε-caprolactone) nanofibrous scaffolds. Materials 11(4):566CrossRef Wu D et al (2018) Nano-graphene oxide functionalized bioactive poly (lactic acid) and poly (ε-caprolactone) nanofibrous scaffolds. Materials 11(4):566CrossRef
195.
Zurück zum Zitat John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534CrossRef John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534CrossRef
196.
Zurück zum Zitat Cairncross, R.A., et al. (2006) Moisture sorption, transport, and hydrolytic degradation in polylactide. in Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Springer. Cairncross, R.A., et al. (2006) Moisture sorption, transport, and hydrolytic degradation in polylactide. in Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Springer.
197.
Zurück zum Zitat MadhavanNampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRef MadhavanNampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRef
198.
Zurück zum Zitat Singh R et al (2003) Biodegradation of poly (ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohyd Res 338(17):1759–1769CrossRef Singh R et al (2003) Biodegradation of poly (ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohyd Res 338(17):1759–1769CrossRef
200.
Zurück zum Zitat Lopes MS, Jardini AL, Filho RM (2012) Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Engineering 42:1402–1413CrossRef Lopes MS, Jardini AL, Filho RM (2012) Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Engineering 42:1402–1413CrossRef
201.
Zurück zum Zitat Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626CrossRef Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626CrossRef
202.
Zurück zum Zitat Zaini, N.A.M. et al. (2019) Purification and polymerisation of microbial d-lactic acid from DDGS hydrolysates fermentation. Biochemical Engineering Journal, 150: p. 107265. Zaini, N.A.M. et al. (2019) Purification and polymerisation of microbial d-lactic acid from DDGS hydrolysates fermentation. Biochemical Engineering Journal, 150: p. 107265.
203.
Zurück zum Zitat Singh SK, Anthony P, Chowdhury A (2018) High molecular weight poly (lactic acid) synthesized with apposite catalytic combination and longer time. Orient J Chem 34(4):1984CrossRef Singh SK, Anthony P, Chowdhury A (2018) High molecular weight poly (lactic acid) synthesized with apposite catalytic combination and longer time. Orient J Chem 34(4):1984CrossRef
204.
Zurück zum Zitat Zhao Y et al (2004) Direct synthesis of poly (D, L-lactic acid) by melt polycondensation and its application in drug delivery. J Appl Polym Sci 91(4):2143–2150CrossRef Zhao Y et al (2004) Direct synthesis of poly (D, L-lactic acid) by melt polycondensation and its application in drug delivery. J Appl Polym Sci 91(4):2143–2150CrossRef
205.
Zurück zum Zitat Yadav N, Nain L, Khare SK (2021) Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization: A step towards curing the environmental plastic issue. Environ Technol Innov 24:101845CrossRef Yadav N, Nain L, Khare SK (2021) Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization: A step towards curing the environmental plastic issue. Environ Technol Innov 24:101845CrossRef
206.
Zurück zum Zitat Jamshidian M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571CrossRef Jamshidian M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571CrossRef
207.
Zurück zum Zitat Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRef Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRef
208.
Zurück zum Zitat Rajak DK et al (2019) Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 11(10):1667CrossRef Rajak DK et al (2019) Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 11(10):1667CrossRef
209.
Zurück zum Zitat Obuchi S., S. Ogawa (2010) Packaging and other commercial applications. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications, p. 457–467. Obuchi S., S. Ogawa (2010) Packaging and other commercial applications. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications, p. 457–467.
210.
Zurück zum Zitat Rajeshkumar G. et al. (2021) Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, p. 127483. Rajeshkumar G. et al. (2021) Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, p. 127483.
Metadaten
Titel
An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications
verfasst von
Ashfaq Ahmad
Fawzi Banat
Habiba Alsafar
Shadi W. Hasan
Publikationsdatum
22.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02581-3

Weitere Artikel der Ausgabe 3/2024

Biomass Conversion and Biorefinery 3/2024 Zur Ausgabe