Skip to main content
Erschienen in: Journal of Electronic Materials 8/2021

08.06.2021 | Original Research Article

Analog/RF Performance Estimation of a Dopingless Symmetric Tunnel Field Effect Transistor

verfasst von: Kumari Nibha Priyadarshani, Sangeeta Singh, Kunal Singh

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An innovative dopingless symmetric tunnel field effect transistor (DLSTFET) has been investigated for its analog/RF performance. It tackles the unidirectional current limitation of conventional p–i–n TFET by allowing bidirectional flow of current due to band-to-band tunnelling through a germanium source/drain to channel through silicon pad layer. Detailed analysis has been carried out to investigate the impact of dielectric thickness and dielectric constant on device performance. DLSTFET with tsox/tdox = tgox = 0.5 nm and HfO2 as dielectric demonstrates optimum device performance with 86.7 µA/µm drive current, ~ 106 ION/IOFF and sub-threshold slope as 36 mV/decade. The benchmarking of a device with the state-of-the art TFET reveals that our reported TFET structure exhibits highest drive current. The reported structure has the inherent advantages of dopingless structure, such as easy fabrication, lower thermal budget, immunity towards the random dopant fluctuations and trap-assisted tunnelling effects. Thus, the structure subjugates the major issues of conventional TFET, i.e. low ON current and unidirectional current. Further, analog/RF performance parameters analysis depicts major improvement with reported cut-off frequency (fT) as 26.7 GHz and gain-bandwidth product as 4.54 GHz. Hence, this device is best suited for low-power digital application as well as for analog applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.O. Koswatta, M.S. Lundstrom, and D.E. Nikonov, IEEE Trans. Electron Devices 56, 456 (2009).CrossRef S.O. Koswatta, M.S. Lundstrom, and D.E. Nikonov, IEEE Trans. Electron Devices 56, 456 (2009).CrossRef
2.
Zurück zum Zitat K. Boucart, W. Riess, and A.M. Ionescu, IEEE Electron Device Lett. 30, 656 (2009).CrossRef K. Boucart, W. Riess, and A.M. Ionescu, IEEE Electron Device Lett. 30, 656 (2009).CrossRef
3.
Zurück zum Zitat K. Boucart, and A.M. Ionescu, IEEE Trans. Electron Devices 54, 1725 (2007).CrossRef K. Boucart, and A.M. Ionescu, IEEE Trans. Electron Devices 54, 1725 (2007).CrossRef
4.
Zurück zum Zitat K. Singh, S. Kumar, E. Goel, B. Singh, M. Kumar, S. Dubey, and S. Jit, J. Electron. Mater. 46, 579 (2017).CrossRef K. Singh, S. Kumar, E. Goel, B. Singh, M. Kumar, S. Dubey, and S. Jit, J. Electron. Mater. 46, 579 (2017).CrossRef
5.
Zurück zum Zitat W.Y. Choi, B.G. Park, J.D. Lee, and T.J.K. Liu, IEEE Electron Device Lett. 28, 743 (2007).CrossRef W.Y. Choi, B.G. Park, J.D. Lee, and T.J.K. Liu, IEEE Electron Device Lett. 28, 743 (2007).CrossRef
6.
Zurück zum Zitat T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, IEEE Int. Electron Devices Meet. 1, 947 (2008). T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, IEEE Int. Electron Devices Meet. 1, 947 (2008).
7.
Zurück zum Zitat H. Lee, S. Park, Y. Lee, H. Nam, and C. Shin, IEEE Trans. Electron Devices 62, 1778 (2014). H. Lee, S. Park, Y. Lee, H. Nam, and C. Shin, IEEE Trans. Electron Devices 62, 1778 (2014).
8.
Zurück zum Zitat W. Y. Choi, J. Y. Song, J. D. Lee, Y. J. Park and B. G. Park. IEDM Tech. Digest 955 (2005). W. Y. Choi, J. Y. Song, J. D. Lee, Y. J. Park and B. G. Park. IEDM Tech. Digest 955 (2005).
9.
10.
Zurück zum Zitat S. A. Abbassi, F. Bashir, S. A. Loan, A. R. M. Alamoud, M. Nizamuddin and M. Rafat, Hetero gate material and dual oxide dopingless tunnel FET. In Proc. IMECS, 1 (2016). S. A. Abbassi, F. Bashir, S. A. Loan, A. R. M. Alamoud, M. Nizamuddin and M. Rafat, Hetero gate material and dual oxide dopingless tunnel FET. In Proc. IMECS, 1 (2016).
11.
Zurück zum Zitat F. Bashir, S.A. Loan, M. Rafat, A.R.M. Alamoud, and S.A. Abbasi, J. Comput. Electron. 14, 477 (2015).CrossRef F. Bashir, S.A. Loan, M. Rafat, A.R.M. Alamoud, and S.A. Abbasi, J. Comput. Electron. 14, 477 (2015).CrossRef
12.
Zurück zum Zitat S. H. Kim, H. Kam, C. Hu and T. J. K. Liu, Germanium-source tunnel field effect transistors with record high I ON/I OFF. Symposium on VLSI Technology, 178 (2009). S. H. Kim, H. Kam, C. Hu and T. J. K. Liu, Germanium-source tunnel field effect transistors with record high I ON/I OFF. Symposium on VLSI Technology, 178 (2009).
13.
Zurück zum Zitat S.H. Kim, S. Agarwal, Z.A. Jacobson, P. Matheu, C. Hu, and T.J.K. Liu, IEEE Electron Device Lett. 31, 1107 (2010).CrossRef S.H. Kim, S. Agarwal, Z.A. Jacobson, P. Matheu, C. Hu, and T.J.K. Liu, IEEE Electron Device Lett. 31, 1107 (2010).CrossRef
14.
15.
Zurück zum Zitat S. Saurabh, and M.J. Kumar, IEEE Trans. Electron Devices 58, 404 (2010).CrossRef S. Saurabh, and M.J. Kumar, IEEE Trans. Electron Devices 58, 404 (2010).CrossRef
16.
Zurück zum Zitat S. Singh, R. Sinha, and P.N. Kondekar, Superlattices Microstruct. 93, 40 (2016).CrossRef S. Singh, R. Sinha, and P.N. Kondekar, Superlattices Microstruct. 93, 40 (2016).CrossRef
17.
Zurück zum Zitat M.J. Kumar, and S. Janardhanan, IEEE Trans. Electron Devices 60, 3285 (2013).CrossRef M.J. Kumar, and S. Janardhanan, IEEE Trans. Electron Devices 60, 3285 (2013).CrossRef
18.
Zurück zum Zitat R. Jhaveri, V. Nagavarapu, and J.C. Woo, IEEE Trans. Electron Devices 58, 80 (2010).CrossRef R. Jhaveri, V. Nagavarapu, and J.C. Woo, IEEE Trans. Electron Devices 58, 80 (2010).CrossRef
19.
Zurück zum Zitat N. Damrongplasit, S.H. Kim, and T.J.K. Liu, IEEE Electron Device Lett. 34, 184 (2013).CrossRef N. Damrongplasit, S.H. Kim, and T.J.K. Liu, IEEE Electron Device Lett. 34, 184 (2013).CrossRef
20.
Zurück zum Zitat X. Duan, J. Zhang, S. Wang, Y. Li, S. Xu, and Y. Hao, IEEE Trans. Electron Devices 65, 1223 (2018).CrossRef X. Duan, J. Zhang, S. Wang, Y. Li, S. Xu, and Y. Hao, IEEE Trans. Electron Devices 65, 1223 (2018).CrossRef
21.
Zurück zum Zitat K.N Priyadarshani, S. Singh and K. Singh, Silicon (2020). K.N Priyadarshani, S. Singh and K. Singh, Silicon (2020).
22.
Zurück zum Zitat ATLAS User Manual, Silvaco International, Santa Clara (2015). ATLAS User Manual, Silvaco International, Santa Clara (2015).
23.
Zurück zum Zitat S. Ramaswamy, and M.J. Kumar, IET Circuits Devices Syst. 11, 365 (2016).CrossRef S. Ramaswamy, and M.J. Kumar, IET Circuits Devices Syst. 11, 365 (2016).CrossRef
24.
Zurück zum Zitat S. Chen, S. Wang, H. Liu, W. Li, Q. Wang, and X. Wang, IEEE Trans. Electron Devices 64, 1343 (2017).CrossRef S. Chen, S. Wang, H. Liu, W. Li, Q. Wang, and X. Wang, IEEE Trans. Electron Devices 64, 1343 (2017).CrossRef
25.
Zurück zum Zitat K. Vanlalawpuia, and B. Bhowmick, IEEE Trans. Electron Devices 66, 4439 (2019).CrossRef K. Vanlalawpuia, and B. Bhowmick, IEEE Trans. Electron Devices 66, 4439 (2019).CrossRef
26.
Zurück zum Zitat E. Ko, H. Lee, J. Park, and C. Shin, IEEE Trans. Electron Devices 63, 5030 (2016).CrossRef E. Ko, H. Lee, J. Park, and C. Shin, IEEE Trans. Electron Devices 63, 5030 (2016).CrossRef
27.
Zurück zum Zitat S. Singh, P.N. Kondekar, and A.P. Singh, J. Nanoelectron. Optoelectron. 12, 365 (2017).CrossRef S. Singh, P.N. Kondekar, and A.P. Singh, J. Nanoelectron. Optoelectron. 12, 365 (2017).CrossRef
28.
Zurück zum Zitat S. Singh, P.N. Kondekar, and R. Sinha, J. Nanoelectron. Optoelectron. 12, 343 (2017).CrossRef S. Singh, P.N. Kondekar, and R. Sinha, J. Nanoelectron. Optoelectron. 12, 343 (2017).CrossRef
29.
Zurück zum Zitat S. Saurabh, and M.J. Kumar, Fundamentals of tunnel Field-Effect Transistors (Boca Raton: CRC Press, 2016).CrossRef S. Saurabh, and M.J. Kumar, Fundamentals of tunnel Field-Effect Transistors (Boca Raton: CRC Press, 2016).CrossRef
30.
Zurück zum Zitat S. Singh, A.P. Singh, and P.N. Kondekar, Microelectron. Eng. 168, 67 (2017).CrossRef S. Singh, A.P. Singh, and P.N. Kondekar, Microelectron. Eng. 168, 67 (2017).CrossRef
31.
Zurück zum Zitat S. Singh, and P.N. Kondekar, Superlattices Microstruct. 88, 695 (2015).CrossRef S. Singh, and P.N. Kondekar, Superlattices Microstruct. 88, 695 (2015).CrossRef
Metadaten
Titel
Analog/RF Performance Estimation of a Dopingless Symmetric Tunnel Field Effect Transistor
verfasst von
Kumari Nibha Priyadarshani
Sangeeta Singh
Kunal Singh
Publikationsdatum
08.06.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08990-w

Weitere Artikel der Ausgabe 8/2021

Journal of Electronic Materials 8/2021 Zur Ausgabe

Neuer Inhalt