Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 14/2020

05.06.2020

Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously

verfasst von: Seyed Reza Fatemi Shariat Panahi, Abdollah Abbasi, Vahid Ghods, Meysam Amirahmadi

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 14/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the efficiency of a CIGS solar cell was increased in several stages. The common structure and configuration of the CIGS solar cell are the ZnO:Al/ZnO/CdS/CIGS/MO combination whose efficiency is optimized approximately 20% for CIGS with thickness of 2 µm and 17% for CIGS with thickness of 1 µm. In this article, thickness of CIGS is 1 µm and the efficiency of this type of solar cell was calculated using Atlas software of Silvaco. In the first step, by applying Zn1−xMgxO material with x = 0.17 instead of ZnO material, the cell efficiency was 20.7% and then by adding GaAs as the electron reflector layer, we were able to achieve 27.1% efficiency and at the end, to increase the efficiency, one absorber layer is added under the CIGS absorber. This absorber layer is CIS (CIS is CuInSe2) that made the efficiency to become 27.9%. Indeed, CIGS absorber layer is not able to absorb all photons of the sun. So, this added absorber layer is able to absorb a part of low-energy photons, which lead to increasing the efficiency of the solar cell. It should be noted that in the whole process of this article, CIGS and CIS absorber layers are p-type.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. Green, Photovoltaics: technology overview. Energy Policy 28(14), 989–998 (2000)CrossRef M.A. Green, Photovoltaics: technology overview. Energy Policy 28(14), 989–998 (2000)CrossRef
2.
Zurück zum Zitat M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond. Phys. E Low Dimen. Syst. Nanostruct. 14(1–2), 65–70 (2002)CrossRef M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond. Phys. E Low Dimen. Syst. Nanostruct. 14(1–2), 65–70 (2002)CrossRef
3.
Zurück zum Zitat A.A. Ojo, W.M. Cranton, I.M. Dharmadasa, Next Generation Multilayer Graded Bandgap Solar Cells (Springer International Publishing, Berlin, 2019)CrossRef A.A. Ojo, W.M. Cranton, I.M. Dharmadasa, Next Generation Multilayer Graded Bandgap Solar Cells (Springer International Publishing, Berlin, 2019)CrossRef
4.
Zurück zum Zitat A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)CrossRef A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)CrossRef
5.
Zurück zum Zitat I.M. Dharmadasa, R.P. Burton, M. Simmonds, Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells (Sol. Energy Mater. Sol, Cells, 2006)CrossRef I.M. Dharmadasa, R.P. Burton, M. Simmonds, Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells (Sol. Energy Mater. Sol, Cells, 2006)CrossRef
6.
Zurück zum Zitat I. Dharmadasa, J. Roberts, G. Hill, Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: experimental results. Sol. Energy Mater. Sol. Cells 88(4), 413–422 (2005)CrossRef I. Dharmadasa, J. Roberts, G. Hill, Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: experimental results. Sol. Energy Mater. Sol. Cells 88(4), 413–422 (2005)CrossRef
7.
Zurück zum Zitat O. Echendu, I. Dharmadasa, Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films. Energies 8(5), 4416–4435 (2015)CrossRef O. Echendu, I. Dharmadasa, Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films. Energies 8(5), 4416–4435 (2015)CrossRef
8.
Zurück zum Zitat I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells 85(2), 293–300 (2005)CrossRef I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells 85(2), 293–300 (2005)CrossRef
9.
Zurück zum Zitat M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018)CrossRef M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018)CrossRef
10.
Zurück zum Zitat R.R. King et al., 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Appl. Phys. Lett. 90(18), 183516 (2007)CrossRef R.R. King et al., 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Appl. Phys. Lett. 90(18), 183516 (2007)CrossRef
11.
Zurück zum Zitat A.F. Palmstrom et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019)CrossRef A.F. Palmstrom et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019)CrossRef
12.
Zurück zum Zitat M. Skompska, Hybrid conjugated polymer/semiconductor photovoltaic cells. Synt. Met. 160(1–2), 1–15 (2010)CrossRef M. Skompska, Hybrid conjugated polymer/semiconductor photovoltaic cells. Synt. Met. 160(1–2), 1–15 (2010)CrossRef
13.
Zurück zum Zitat I. Gharibshahian, S. Sharbati, A.A. Orouji, Potential efficiency improvement of Cu (In, Ga) Se2 thin-film solar cells by the window layer optimization. Thin Solid Films 655, 95–104 (2018)CrossRef I. Gharibshahian, S. Sharbati, A.A. Orouji, Potential efficiency improvement of Cu (In, Ga) Se2 thin-film solar cells by the window layer optimization. Thin Solid Films 655, 95–104 (2018)CrossRef
14.
Zurück zum Zitat S. Sharbati, I. Gharibshahian, A.A. Orouji, Proposed suitable electron reflector layer materials for thin-film CuIn1−xGaxSe2 solar cells. Opt. Mater. (Amst) 75, 216–223 (2018)CrossRef S. Sharbati, I. Gharibshahian, A.A. Orouji, Proposed suitable electron reflector layer materials for thin-film CuIn1−xGaxSe2 solar cells. Opt. Mater. (Amst) 75, 216–223 (2018)CrossRef
15.
Zurück zum Zitat S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, Computational analysis of the effect of the surface defect layer (SDL) properties on Cu(In, Ga)Se2-based solar cell performances. J. Phys. Chem. Solids 75(5), 688–695 (2014)CrossRef S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, Computational analysis of the effect of the surface defect layer (SDL) properties on Cu(In, Ga)Se2-based solar cell performances. J. Phys. Chem. Solids 75(5), 688–695 (2014)CrossRef
16.
Zurück zum Zitat S. Inc., Atlas User’s Manual. Santa Clara: Silvaco, 2019. S. Inc., Atlas User’s Manual. Santa Clara: Silvaco, 2019.
17.
Zurück zum Zitat A. Zebentout, S. Bechlaghem, Z. Benamara, Investigations of achieved performances of solar cells based chalcogenide via TCAD tools. J. New Technol. Mater. 8(1), 110–113 (2018)CrossRef A. Zebentout, S. Bechlaghem, Z. Benamara, Investigations of achieved performances of solar cells based chalcogenide via TCAD tools. J. New Technol. Mater. 8(1), 110–113 (2018)CrossRef
18.
Zurück zum Zitat S. Tobbeche, H. Amar, D. Technologie, Two-dimensional modelling and simulation of CIGS thin-film solar cell. J. New Technol. Mater. 4, 89–93 (2014)CrossRef S. Tobbeche, H. Amar, D. Technologie, Two-dimensional modelling and simulation of CIGS thin-film solar cell. J. New Technol. Mater. 4, 89–93 (2014)CrossRef
19.
Zurück zum Zitat M. Elbar, S. Tobbeche, Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the silvaco-atlas software. Energy Proc. 74, 1220–1227 (2015)CrossRef M. Elbar, S. Tobbeche, Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the silvaco-atlas software. Energy Proc. 74, 1220–1227 (2015)CrossRef
20.
Zurück zum Zitat P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, “Effects of heavy alkali elements in Cu(In, Ga)Se 2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. 10(8), 583–586 (2016)CrossRef P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, “Effects of heavy alkali elements in Cu(In, Ga)Se 2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. 10(8), 583–586 (2016)CrossRef
21.
Zurück zum Zitat A. Chirilă et al., Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12(12), 1107–1111 (2013)CrossRef A. Chirilă et al., Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12(12), 1107–1111 (2013)CrossRef
23.
Zurück zum Zitat J. Chantana, T. Kato, H. Sugimoto, T. Minemoto, Thin-film Cu(In, Ga)(Se, S) 2-based solar cell with (Cd, Zn)S buffer layer and Zn1–xMgxO window layer. Prog. Photovolt. Res. Appl. 25(6), 431–440 (2017)CrossRef J. Chantana, T. Kato, H. Sugimoto, T. Minemoto, Thin-film Cu(In, Ga)(Se, S) 2-based solar cell with (Cd, Zn)S buffer layer and Zn1–xMgxO window layer. Prog. Photovolt. Res. Appl. 25(6), 431–440 (2017)CrossRef
24.
Zurück zum Zitat J. Lindahl et al., Inline Cu(In, Ga)Se2 Co-evaporation for high-efficiency solar cells and modules. IEEE J. Photovolt. 3(3), 1100–1105 (2013)CrossRef J. Lindahl et al., Inline Cu(In, Ga)Se2 Co-evaporation for high-efficiency solar cells and modules. IEEE J. Photovolt. 3(3), 1100–1105 (2013)CrossRef
25.
Zurück zum Zitat T.M. Friedlmeier et al., Improved photocurrent in Cu(In, Ga)Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J. Photovolt. 5(5), 1487–1491 (2015)CrossRef T.M. Friedlmeier et al., Improved photocurrent in Cu(In, Ga)Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J. Photovolt. 5(5), 1487–1491 (2015)CrossRef
26.
Zurück zum Zitat S. Spiering, A. Nowitzki, F. Kessler, M. Igalson, H. Abdel Maksoud, Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation. Sol. Energy Mater. Sol. Cells 144, 544–550 (2016)CrossRef S. Spiering, A. Nowitzki, F. Kessler, M. Igalson, H. Abdel Maksoud, Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation. Sol. Energy Mater. Sol. Cells 144, 544–550 (2016)CrossRef
Metadaten
Titel
Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously
verfasst von
Seyed Reza Fatemi Shariat Panahi
Abdollah Abbasi
Vahid Ghods
Meysam Amirahmadi
Publikationsdatum
05.06.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 14/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03700-4

Weitere Artikel der Ausgabe 14/2020

Journal of Materials Science: Materials in Electronics 14/2020 Zur Ausgabe

Neuer Inhalt