Skip to main content
Erschienen in: Microsystem Technologies 2/2019

01.06.2018 | Technical Paper

Analysis of a fiber-optic deep-etched silicon Fabry–Perot temperature sensor and modeling its fabrication imperfections

verfasst von: Sanaz Zarei, Mahmoud Shahabadi, Shamsoddin Mohajerzadeh

Erschienen in: Microsystem Technologies | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Design and fabrication of an in-plane silicon Fabry–Perot temperature sensor for fiber-optic temperature sensing was reported in our previous work. To fabricate this sensor, deep reactive ion etching process was utilized which is challenging due to the large depth of etching needed for the device. Required optically smooth surfaces and highly vertical sidewalls as well as minimum amount of under-etch are difficult to be achieved in deep-etched structures. Here, the fabrication errors are briefly introduced and thereafter a numerical analysis based on the transfer-matrix formulation for propagation of Gaussian beams across the proposed silicon Fabry–Perot resonator is developed. Finally, the fabricated sensor is modeled and the device performance degradation due to fabrication imperfections is estimated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Addae-Mensah K, Retterer S, Opalenik S et al (2010) Cryogenic etching of silicon: an alternative method for fabrication of vertical microcantilever master molds. J Microelectromech Syst 19:64–74CrossRef Addae-Mensah K, Retterer S, Opalenik S et al (2010) Cryogenic etching of silicon: an alternative method for fabrication of vertical microcantilever master molds. J Microelectromech Syst 19:64–74CrossRef
Zurück zum Zitat Azimi S, Mehran M, Amini A et al (2010) Formation of three-dimensional and nanowall structures on silicon using a hydrogen-assisted high aspect ratio etching. J Vac Sci Technol B 28(6):1125–1131CrossRef Azimi S, Mehran M, Amini A et al (2010) Formation of three-dimensional and nanowall structures on silicon using a hydrogen-assisted high aspect ratio etching. J Vac Sci Technol B 28(6):1125–1131CrossRef
Zurück zum Zitat Beheim G, Sotomayor J, Tuma M (1993) Laser-annealed thin-film fiber-optic temperature sensor. Proc SPIE 2045:217–221CrossRef Beheim G, Sotomayor J, Tuma M (1993) Laser-annealed thin-film fiber-optic temperature sensor. Proc SPIE 2045:217–221CrossRef
Zurück zum Zitat Berthold JW, Reed SE, Sarkis RG (1991) Reflective fiber optic temperature sensor using silicon thin film. Opt Eng 30(5):524–528CrossRef Berthold JW, Reed SE, Sarkis RG (1991) Reflective fiber optic temperature sensor using silicon thin film. Opt Eng 30(5):524–528CrossRef
Zurück zum Zitat Breglio G, Coppola G, Cutolo A et al (2001) Temperature optical sensor based on a silicon bi-modal Y branch. Proc SPIE 4293:155–161CrossRef Breglio G, Coppola G, Cutolo A et al (2001) Temperature optical sensor based on a silicon bi-modal Y branch. Proc SPIE 4293:155–161CrossRef
Zurück zum Zitat Chang C, Solgaard O (2013) Fano resonances in integrated silicon Bragg reflectors for sensing applications. Opt Express 21(22):27209–27218CrossRef Chang C, Solgaard O (2013) Fano resonances in integrated silicon Bragg reflectors for sensing applications. Opt Express 21(22):27209–27218CrossRef
Zurück zum Zitat Cocorullo G, Della Corte F, Iodice M et al (1997) A temperature all-silicon micro-sensor based on the thermo-optic effect. IEEE Trans Electron Devices 44(5):766–774CrossRef Cocorullo G, Della Corte F, Iodice M et al (1997) A temperature all-silicon micro-sensor based on the thermo-optic effect. IEEE Trans Electron Devices 44(5):766–774CrossRef
Zurück zum Zitat Gharooni M, Mohajerzadeh A, Sandoughsaz A et al (2013) A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon. J Micromech Microeng 23(9):095014CrossRef Gharooni M, Mohajerzadeh A, Sandoughsaz A et al (2013) A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon. J Micromech Microeng 23(9):095014CrossRef
Zurück zum Zitat Guan X, Wang X, Frandsen L (2016) Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt Express 24(15):16349–16356CrossRef Guan X, Wang X, Frandsen L (2016) Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt Express 24(15):16349–16356CrossRef
Zurück zum Zitat Irace A, Breglio G (2003) All-silicon optical temperature sensor based on multi-mode interference. Opt Express 11(22):2807–2812CrossRef Irace A, Breglio G (2003) All-silicon optical temperature sensor based on multi-mode interference. Opt Express 11(22):2807–2812CrossRef
Zurück zum Zitat Jung I, Park B, Provine J et al (2011) Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. J Lightwave Technol 29(9):1367–1374CrossRef Jung I, Park B, Provine J et al (2011) Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. J Lightwave Technol 29(9):1367–1374CrossRef
Zurück zum Zitat Kim H, Yu M (2016) Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt Express 24(9):9501–9510CrossRef Kim H, Yu M (2016) Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt Express 24(9):9501–9510CrossRef
Zurück zum Zitat Kim G, Lee H, Park C et al (2010) Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt Express 18(21):22215–22221CrossRef Kim G, Lee H, Park C et al (2010) Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt Express 18(21):22215–22221CrossRef
Zurück zum Zitat Klimov N, Berger M, Ahmed Z (2015a) Towards reproducible ring resonator based temperature sensors. Sens Transducers J 191(8):63–66 Klimov N, Berger M, Ahmed Z (2015a) Towards reproducible ring resonator based temperature sensors. Sens Transducers J 191(8):63–66
Zurück zum Zitat Klimov N, Mittal S, Berger M et al (2015b) On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt Lett 40(17):3934–3936CrossRef Klimov N, Mittal S, Berger M et al (2015b) On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt Lett 40(17):3934–3936CrossRef
Zurück zum Zitat Laermer F, Schilp A (1996) Method of anisotropically etching silicon. US Patent 26(3):5501893 Laermer F, Schilp A (1996) Method of anisotropically etching silicon. US Patent 26(3):5501893
Zurück zum Zitat Lee H, Kim G, Kim W et al (2011) Tunable-Resonator-Based Temperature Sensor Interrogated through Optical Power Detection. Appl Phys Express 4(10):102201CrossRef Lee H, Kim G, Kim W et al (2011) Tunable-Resonator-Based Temperature Sensor Interrogated through Optical Power Detection. Appl Phys Express 4(10):102201CrossRef
Zurück zum Zitat Lipson A, Yeatman EM (2007a) A 1-D photonic band gap tunable optical filter in (110) silicon. J Microelectromech Syst 16(3):521–527CrossRef Lipson A, Yeatman EM (2007a) A 1-D photonic band gap tunable optical filter in (110) silicon. J Microelectromech Syst 16(3):521–527CrossRef
Zurück zum Zitat Lipson A, Yeatman EM (2007b) Low-loss one-dimensional photonic band gap filter in (110) silicon. Opt Lett 31(3):395–397CrossRef Lipson A, Yeatman EM (2007b) Low-loss one-dimensional photonic band gap filter in (110) silicon. Opt Lett 31(3):395–397CrossRef
Zurück zum Zitat Liu G, Han M, Hou W (2015) High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry–Perot cavity. Opt Express 23(6):7237–7247CrossRef Liu G, Han M, Hou W (2015) High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry–Perot cavity. Opt Express 23(6):7237–7247CrossRef
Zurück zum Zitat Park B, Provine J, Jung I et al (2011) Photonic crystal fiber tip sensor for high-temperature measurement. IEEE Sens J 11(11):2643–2648CrossRef Park B, Provine J, Jung I et al (2011) Photonic crystal fiber tip sensor for high-temperature measurement. IEEE Sens J 11(11):2643–2648CrossRef
Zurück zum Zitat Park B, Jung IW, Provine J et al (2014) Double-layer silicon photonic crystal fiber-tip temperature sensors. IEEE Photon. Technol. Lett. 26(9):900–903CrossRef Park B, Jung IW, Provine J et al (2014) Double-layer silicon photonic crystal fiber-tip temperature sensors. IEEE Photon. Technol. Lett. 26(9):900–903CrossRef
Zurück zum Zitat Sammak A, Azimi S, Izadi N et al (2007) Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching. J Microelectromech Syst 16(4):912–918CrossRef Sammak A, Azimi S, Izadi N et al (2007) Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching. J Microelectromech Syst 16(4):912–918CrossRef
Zurück zum Zitat Schultheis L, Amstutz H, Kaufmann M (1988) Fiber-optic temperature sensing with ultrathin silicon etalons. Opt Lett 13(9):782–784CrossRef Schultheis L, Amstutz H, Kaufmann M (1988) Fiber-optic temperature sensing with ultrathin silicon etalons. Opt Lett 13(9):782–784CrossRef
Zurück zum Zitat St-Gelais R, Poulin A, Peter Y (2012) Advances in modeling, design, and fabrication of deep-etched multilayer resonators. J Lightwave Technol 30(12):1900–1908CrossRef St-Gelais R, Poulin A, Peter Y (2012) Advances in modeling, design, and fabrication of deep-etched multilayer resonators. J Lightwave Technol 30(12):1900–1908CrossRef
Zurück zum Zitat Tachi S, Tsujimoto K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52:616CrossRef Tachi S, Tsujimoto K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52:616CrossRef
Zurück zum Zitat Tao J, Cai H, Gu Y et al (2015) Demonstration of a photonic-based linear temperature sensor. IEEE Photon Technol Lett 27(7):767–769CrossRef Tao J, Cai H, Gu Y et al (2015) Demonstration of a photonic-based linear temperature sensor. IEEE Photon Technol Lett 27(7):767–769CrossRef
Zurück zum Zitat Xu H, Hafezi M, Fan J et al (2014) Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt Express 22(3):3098–3104CrossRef Xu H, Hafezi M, Fan J et al (2014) Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt Express 22(3):3098–3104CrossRef
Zurück zum Zitat Zarei S, Mohajerzadeh S (2017) Exploitation of semi-sequential reactive ion etch processes to fabricate in-plane silicon structures. Micro Nano Lett 13:421–426CrossRef Zarei S, Mohajerzadeh S (2017) Exploitation of semi-sequential reactive ion etch processes to fabricate in-plane silicon structures. Micro Nano Lett 13:421–426CrossRef
Metadaten
Titel
Analysis of a fiber-optic deep-etched silicon Fabry–Perot temperature sensor and modeling its fabrication imperfections
verfasst von
Sanaz Zarei
Mahmoud Shahabadi
Shamsoddin Mohajerzadeh
Publikationsdatum
01.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3978-z

Weitere Artikel der Ausgabe 2/2019

Microsystem Technologies 2/2019 Zur Ausgabe

Neuer Inhalt