Skip to main content
Erschienen in: Archive of Applied Mechanics 5/2020

11.12.2019 | Original

Analysis of a finite matrix with an inhomogeneous circular inclusion subjected to a non-uniform eigenstrain

verfasst von: Biao Wang, Wen Zhao, Lifeng Ma

Erschienen in: Archive of Applied Mechanics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical model of eigenstrains could not be always taken as uniform distributions in engineering applications when performing micromechanics analysis of the inclusion-matrix system. In the framework of plane strain, this paper presents the analytical solution to an inhomogeneous circular inclusion with a non-uniform eigenstrain concentrically embedded in a finite matrix. First, the equivalent eigenstrain equation is extended to satisfy the condition of the finite matrix through the equivalent eigenstrain principle. The modified equation is used to transform the inhomogeneous inclusion in a finite matrix into the corresponding homogeneous inclusion. Then, the model of the inhomogeneous circular inclusion is accordingly formulated, and the stress and strain distributions are found. Finally, the stresses for the case of the polynomial series distribution of eigenstrains are obtained. The effects of non-uniformity of eigenstrains, the material mismatch and the inclusion size on stress distributions are shown graphically. The results indicate the stiffer inclusion induces the larger stress under the specific eigenstrain distribution. The analytical solutions obtained here also help to predict failure and optimize the designs of composite structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)CrossRef Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)CrossRef
2.
3.
Zurück zum Zitat Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 241(1226), 376–396 (1957)CrossRefMathSciNetMATH Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 241(1226), 376–396 (1957)CrossRefMathSciNetMATH
4.
Zurück zum Zitat Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A 252(1271), 561–569 (1959)MathSciNetMATH Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A 252(1271), 561–569 (1959)MathSciNetMATH
5.
Zurück zum Zitat Ma, L., Wang, B., Korsunsky, A.M.: Complex variable formulation for a rigid line inclusion interacting with a generalized singularity. Arch. Appl. Mech. 88(4), 613–627 (2018)CrossRef Ma, L., Wang, B., Korsunsky, A.M.: Complex variable formulation for a rigid line inclusion interacting with a generalized singularity. Arch. Appl. Mech. 88(4), 613–627 (2018)CrossRef
6.
Zurück zum Zitat Ma, L., Qiu, Y., Zhang, Y., Li, G.: General solution for inhomogeneous line inclusion with non-uniform eigenstrain. Arch. Appl. Mech. 89, 1723–1741 (2019) Ma, L., Qiu, Y., Zhang, Y., Li, G.: General solution for inhomogeneous line inclusion with non-uniform eigenstrain. Arch. Appl. Mech. 89, 1723–1741 (2019)
7.
Zurück zum Zitat Jobin, T., Ramji, M., Khaderi, S.: Numerical evaluation of the interaction of rigid line inclusions using strain intensity factors. Int. J. Mech. Sci. 153, 10–20 (2019)CrossRef Jobin, T., Ramji, M., Khaderi, S.: Numerical evaluation of the interaction of rigid line inclusions using strain intensity factors. Int. J. Mech. Sci. 153, 10–20 (2019)CrossRef
8.
Zurück zum Zitat Jin, X., Keer, L.M., Wang, Q.: Analytical solution for the stress field of Eshelby’s inclusion of polygonal shape. In: Proceedings of STLE/ASME International Joint Tribology Conference, pp. 487–489 (2009) Jin, X., Keer, L.M., Wang, Q.: Analytical solution for the stress field of Eshelby’s inclusion of polygonal shape. In: Proceedings of STLE/ASME International Joint Tribology Conference, pp. 487–489 (2009)
9.
Zurück zum Zitat Xu, B., Wang, M.: Special properties of Eshelby tensor for a regular polygonal inclusion. Acta Mech. Sin. 21(3), 267–271 (2005)CrossRefMATH Xu, B., Wang, M.: Special properties of Eshelby tensor for a regular polygonal inclusion. Acta Mech. Sin. 21(3), 267–271 (2005)CrossRefMATH
10.
Zurück zum Zitat Sun, L., Xu, K., Pan, E.: Inclusion of arbitrary polygon with graded eigenstrain in an anisotropic piezoelectric full plane. Int. J. Solids Struct. 49(13), 1773–1785 (2012)CrossRef Sun, L., Xu, K., Pan, E.: Inclusion of arbitrary polygon with graded eigenstrain in an anisotropic piezoelectric full plane. Int. J. Solids Struct. 49(13), 1773–1785 (2012)CrossRef
11.
Zurück zum Zitat Yue, Y., Xu, K., Chen, Q., Pan, E.: Eshelby problem of an arbitrary polygonal inclusion in anisotropic piezoelectric media with quadratic eigenstrains. Acta. Mech. 226(7), 2365–2378 (2015)CrossRefMathSciNetMATH Yue, Y., Xu, K., Chen, Q., Pan, E.: Eshelby problem of an arbitrary polygonal inclusion in anisotropic piezoelectric media with quadratic eigenstrains. Acta. Mech. 226(7), 2365–2378 (2015)CrossRefMathSciNetMATH
12.
Zurück zum Zitat Chiang, C.R.: Problems of polygonal inclusions in orthotropic materials with due consideration on the stresses at corners. Arch. Appl. Mech. 86(5), 769–785 (2016)CrossRef Chiang, C.R.: Problems of polygonal inclusions in orthotropic materials with due consideration on the stresses at corners. Arch. Appl. Mech. 86(5), 769–785 (2016)CrossRef
13.
Zurück zum Zitat Nozaki, H., Taya, M.: Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. J. Appl. Mech. 68(3), 441–452 (2001)CrossRefMATH Nozaki, H., Taya, M.: Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. J. Appl. Mech. 68(3), 441–452 (2001)CrossRefMATH
14.
Zurück zum Zitat Liu, M., Gao, X.L.: Solution of the Eshelby-type anti-plane strain polygonal inclusion problem based on a simplified strain gradient elasticity theory. Acta. Mech. 225(3), 809–823 (2014)CrossRefMathSciNetMATH Liu, M., Gao, X.L.: Solution of the Eshelby-type anti-plane strain polygonal inclusion problem based on a simplified strain gradient elasticity theory. Acta. Mech. 225(3), 809–823 (2014)CrossRefMathSciNetMATH
15.
Zurück zum Zitat Liu, M., Gao, X.L.: Strain gradient solution for the Eshelby-type polygonal inclusion problem. Int. J. Solids Struct. 50(2), 328–338 (2013)CrossRef Liu, M., Gao, X.L.: Strain gradient solution for the Eshelby-type polygonal inclusion problem. Int. J. Solids Struct. 50(2), 328–338 (2013)CrossRef
16.
Zurück zum Zitat Gao, X.L., Liu, M.: Strain gradient solution for the Eshelby-type polyhedral inclusion problem. J. Mech. Phys. Solids 60(2), 261–276 (2012)CrossRefMathSciNetMATH Gao, X.L., Liu, M.: Strain gradient solution for the Eshelby-type polyhedral inclusion problem. J. Mech. Phys. Solids 60(2), 261–276 (2012)CrossRefMathSciNetMATH
17.
Zurück zum Zitat Ru, C.: Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta. Mech. 160(3–4), 219–234 (2003)CrossRefMATH Ru, C.: Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta. Mech. 160(3–4), 219–234 (2003)CrossRefMATH
18.
Zurück zum Zitat Nakasone, Y., Nishiyama, H., Nojiri, T.: Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Mater. Sci. Eng. A 285(1–2), 229–238 (2000)CrossRef Nakasone, Y., Nishiyama, H., Nojiri, T.: Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Mater. Sci. Eng. A 285(1–2), 229–238 (2000)CrossRef
19.
Zurück zum Zitat Dong, C., Lo, S., Cheung, Y.: Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Methods Appl. Mech. Eng. 192(5–6), 683–696 (2003)CrossRefMATH Dong, C., Lo, S., Cheung, Y.: Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Methods Appl. Mech. Eng. 192(5–6), 683–696 (2003)CrossRefMATH
20.
Zurück zum Zitat Wang, J., Michelitsch, T.M., Gao, H., Levin, V.M.: On the solution of the dynamic Eshelby problem for inclusions of various shapes. Int. J. Solids Struct. 42(2), 353–363 (2005)CrossRefMATH Wang, J., Michelitsch, T.M., Gao, H., Levin, V.M.: On the solution of the dynamic Eshelby problem for inclusions of various shapes. Int. J. Solids Struct. 42(2), 353–363 (2005)CrossRefMATH
21.
Zurück zum Zitat Wang, X., Schiavone, P.: Eshelby’s problem for infinite, semi-infinite and two bonded semi-infinite laminated anisotropic thin plates. Arch. Appl. Mech. 85(5), 573–585 (2015)CrossRefMATH Wang, X., Schiavone, P.: Eshelby’s problem for infinite, semi-infinite and two bonded semi-infinite laminated anisotropic thin plates. Arch. Appl. Mech. 85(5), 573–585 (2015)CrossRefMATH
22.
Zurück zum Zitat Zhou, Q., Jin, X., Wang, Z., Wang, J., Keer, L.M., Wang, Q.: Numerical implementation of the equivalent inclusion method for 2D arbitrarily shaped inhomogeneities. J. Elast. 118(1), 39–61 (2015)CrossRefMathSciNetMATH Zhou, Q., Jin, X., Wang, Z., Wang, J., Keer, L.M., Wang, Q.: Numerical implementation of the equivalent inclusion method for 2D arbitrarily shaped inhomogeneities. J. Elast. 118(1), 39–61 (2015)CrossRefMathSciNetMATH
23.
Zurück zum Zitat Wang, X., Gao, X.L.: On the uniform stress state inside an inclusion of arbitrary shape in a three-phase composite. Z. Angew. Math. Phys. 62(6), 1101–1116 (2011)CrossRefMathSciNetMATH Wang, X., Gao, X.L.: On the uniform stress state inside an inclusion of arbitrary shape in a three-phase composite. Z. Angew. Math. Phys. 62(6), 1101–1116 (2011)CrossRefMathSciNetMATH
24.
Zurück zum Zitat Nie, G., Chan, C., Luo, L., Shin, F.: Non-uniform eigenstrain induced anti-plane stress field in an elliptic inhomogeneity embedded in anisotropic media with a single plane of symmetry. Acta. Mech. 206(1–2), 23–37 (2009)CrossRefMATH Nie, G., Chan, C., Luo, L., Shin, F.: Non-uniform eigenstrain induced anti-plane stress field in an elliptic inhomogeneity embedded in anisotropic media with a single plane of symmetry. Acta. Mech. 206(1–2), 23–37 (2009)CrossRefMATH
25.
Zurück zum Zitat Nie, G., Guo, L., Chan, C., Shin, F.: Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with purely imaginary roots. Mech. Adv. Mater. Struct. 16(1), 33–45 (2009)CrossRef Nie, G., Guo, L., Chan, C., Shin, F.: Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with purely imaginary roots. Mech. Adv. Mater. Struct. 16(1), 33–45 (2009)CrossRef
26.
Zurück zum Zitat Guo, L., Nie, G., Chan, C.: Elliptical inhomogeneity with polynomial eigenstrains embedded in orthotropic materials. Arch. Appl. Mech. 81(2), 157–170 (2011)CrossRefMATH Guo, L., Nie, G., Chan, C.: Elliptical inhomogeneity with polynomial eigenstrains embedded in orthotropic materials. Arch. Appl. Mech. 81(2), 157–170 (2011)CrossRefMATH
27.
Zurück zum Zitat Xu, B.X., Wang, M.Z.: The arithmetic mean property for rotational symmetrical inclusions with rotational symmetrical eigenstrains. Z. Angew. Math. Mech. 87(1), 59–69 (2007)CrossRefMathSciNetMATH Xu, B.X., Wang, M.Z.: The arithmetic mean property for rotational symmetrical inclusions with rotational symmetrical eigenstrains. Z. Angew. Math. Mech. 87(1), 59–69 (2007)CrossRefMathSciNetMATH
28.
Zurück zum Zitat Chen, Y.: Solution for Eshelby’s elliptic inclusion with polynomials distribution of the eigenstrains in plane elasticity. Appl. Math. Model. 38(19–20), 4872–4884 (2014)CrossRefMathSciNetMATH Chen, Y.: Solution for Eshelby’s elliptic inclusion with polynomials distribution of the eigenstrains in plane elasticity. Appl. Math. Model. 38(19–20), 4872–4884 (2014)CrossRefMathSciNetMATH
29.
Zurück zum Zitat Cebeci, H., de Villoria, R.G., Hart, A.J., Wardle, B.L.: Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69(15–16), 2649–2656 (2009)CrossRef Cebeci, H., de Villoria, R.G., Hart, A.J., Wardle, B.L.: Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69(15–16), 2649–2656 (2009)CrossRef
30.
Zurück zum Zitat Bradford, P.D., Wang, X., Zhao, H., Maria, J.P., Jia, Q., Zhu, Y.: A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos. Sci. Technol. 70(13), 1980–1985 (2010)CrossRef Bradford, P.D., Wang, X., Zhao, H., Maria, J.P., Jia, Q., Zhu, Y.: A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos. Sci. Technol. 70(13), 1980–1985 (2010)CrossRef
31.
Zurück zum Zitat Wardle, B.L., Saito, D.S., Garcia, E.J., Hart, A.J., de Villoria, R.G., Verploegen, E.A.: Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube-polymer composites. Adv. Mater. 20(14), 2707–2714 (2008)CrossRef Wardle, B.L., Saito, D.S., Garcia, E.J., Hart, A.J., de Villoria, R.G., Verploegen, E.A.: Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube-polymer composites. Adv. Mater. 20(14), 2707–2714 (2008)CrossRef
32.
Zurück zum Zitat Prabhu, B., Suryanarayana, C., An, L., Vaidyanathan, R.: Synthesis and characterization of high volume fraction Al–Al\(_{2}\)O\(_{3}\) nanocomposite powders by high-energy milling. Mater. Sci. Eng. A 425(1–2), 192–200 (2006)CrossRef Prabhu, B., Suryanarayana, C., An, L., Vaidyanathan, R.: Synthesis and characterization of high volume fraction Al–Al\(_{2}\)O\(_{3}\) nanocomposite powders by high-energy milling. Mater. Sci. Eng. A 425(1–2), 192–200 (2006)CrossRef
33.
Zurück zum Zitat Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall. 21(5), 571–574 (1973)CrossRef Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall. 21(5), 571–574 (1973)CrossRef
34.
Zurück zum Zitat Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)CrossRef Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)CrossRef
35.
Zurück zum Zitat Hellmich, C., Ulm, F.J., Dormieux, L.: Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomech. Model. Mechanobiol. 2(4), 219–238 (2004)CrossRef Hellmich, C., Ulm, F.J., Dormieux, L.: Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomech. Model. Mechanobiol. 2(4), 219–238 (2004)CrossRef
36.
Zurück zum Zitat Vass, V., Morin, C., Scheiner, S., Hellmich, C.: Review of "Universal" rules governing bone composition, organization, and elasticity across organizational hierarchies. CISM Int. Cent. Mech. Sci. 578, 175–229 (2018)CrossRef Vass, V., Morin, C., Scheiner, S., Hellmich, C.: Review of "Universal" rules governing bone composition, organization, and elasticity across organizational hierarchies. CISM Int. Cent. Mech. Sci. 578, 175–229 (2018)CrossRef
37.
Zurück zum Zitat Pichler, B., Hellmich, C., Mang, H.: A combined fracture-micromechanics model for tensile strain-softening in brittle materials, based on propagation of interacting microcracks. Int. J. Numer. Anal. Methods Geomech. 31(2), 111–132 (2007)CrossRefMATH Pichler, B., Hellmich, C., Mang, H.: A combined fracture-micromechanics model for tensile strain-softening in brittle materials, based on propagation of interacting microcracks. Int. J. Numer. Anal. Methods Geomech. 31(2), 111–132 (2007)CrossRefMATH
38.
Zurück zum Zitat Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)CrossRef Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)CrossRef
39.
Zurück zum Zitat Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39(12), 4243–4274 (2018)CrossRef Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39(12), 4243–4274 (2018)CrossRef
40.
Zurück zum Zitat Gao, X.L., Mac, H.: Strain gradient solution for Eshelby’s ellipsoidal inclusion problem. Proc. R. Soc. Lond. Ser. A 466(2120), 2425–2446 (2010)CrossRefMathSciNetMATH Gao, X.L., Mac, H.: Strain gradient solution for Eshelby’s ellipsoidal inclusion problem. Proc. R. Soc. Lond. Ser. A 466(2120), 2425–2446 (2010)CrossRefMathSciNetMATH
41.
Zurück zum Zitat Fritsch, A., Hellmich, C., Young, P.: Micromechanics-derived scaling relations for poroelasticity and strength of brittle porous polycrystals. J. Appl. Mech. 80(2), 020905 (2013)CrossRef Fritsch, A., Hellmich, C., Young, P.: Micromechanics-derived scaling relations for poroelasticity and strength of brittle porous polycrystals. J. Appl. Mech. 80(2), 020905 (2013)CrossRef
42.
Zurück zum Zitat Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific Publishing Company, Singapore (2008)CrossRefMATH Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific Publishing Company, Singapore (2008)CrossRefMATH
43.
Zurück zum Zitat Zaoui, A.: Continuum micromechanics: survey. J. Eng. Mech. 128(8), 808–816 (2002)CrossRef Zaoui, A.: Continuum micromechanics: survey. J. Eng. Mech. 128(8), 808–816 (2002)CrossRef
44.
Zurück zum Zitat Pichler, B., Hellmich, C.: Estimation of influence tensors for eigenstressed multiphase elastic media with nonaligned inclusion phases of arbitrary ellipsoidal shape. J. Eng. Mech. 136(8), 1043–1053 (2010)CrossRef Pichler, B., Hellmich, C.: Estimation of influence tensors for eigenstressed multiphase elastic media with nonaligned inclusion phases of arbitrary ellipsoidal shape. J. Eng. Mech. 136(8), 1043–1053 (2010)CrossRef
45.
Zurück zum Zitat Morin, C., Vass, V., Hellmich, C.: Micromechanics of elastoplastic porous polycrystals: theory, algorithm, and application to osteonal bone. Int. J. Plast. 91, 238–267 (2017)CrossRef Morin, C., Vass, V., Hellmich, C.: Micromechanics of elastoplastic porous polycrystals: theory, algorithm, and application to osteonal bone. Int. J. Plast. 91, 238–267 (2017)CrossRef
46.
Zurück zum Zitat Wang, H., Hellmich, C., Yuan, Y., Mang, H., Pichler, B.: May reversible water uptake/release by hydrates explain the thermal expansion of cement paste?—Arguments from an inverse multiscale analysis. Cem. Concr. Res. 113, 13–26 (2018)CrossRef Wang, H., Hellmich, C., Yuan, Y., Mang, H., Pichler, B.: May reversible water uptake/release by hydrates explain the thermal expansion of cement paste?—Arguments from an inverse multiscale analysis. Cem. Concr. Res. 113, 13–26 (2018)CrossRef
47.
Zurück zum Zitat Li, S., Sauer, R., Wang, G.: A circular inclusion in a finite domain I. The Dirichlet–Eshelby problem. Acta. Mech. 179(1–2), 67–90 (2005)CrossRefMATH Li, S., Sauer, R., Wang, G.: A circular inclusion in a finite domain I. The Dirichlet–Eshelby problem. Acta. Mech. 179(1–2), 67–90 (2005)CrossRefMATH
48.
Zurück zum Zitat Li, S., Sauer, R.A., Wang, G.: The Eshelby tensors in a finite spherical domain—part I: theoretical formulations. J. Appl. Mech. 74(4), 770–783 (2007)CrossRefMathSciNet Li, S., Sauer, R.A., Wang, G.: The Eshelby tensors in a finite spherical domain—part I: theoretical formulations. J. Appl. Mech. 74(4), 770–783 (2007)CrossRefMathSciNet
49.
Zurück zum Zitat Li, S., Wang, G., Sauer, R.A.: The Eshelby tensors in a finite spherical domain—part II: applications to homogenization. J. Appl. Mech. 74(4), 784–797 (2007)CrossRefMathSciNet Li, S., Wang, G., Sauer, R.A.: The Eshelby tensors in a finite spherical domain—part II: applications to homogenization. J. Appl. Mech. 74(4), 784–797 (2007)CrossRefMathSciNet
50.
Zurück zum Zitat Wang, G., Li, S., Sauer, R.: A circular inclusion in a finite domain II. The Neumann–Eshelby problem. Acta. Mech. 179(1–2), 91–110 (2005)CrossRef Wang, G., Li, S., Sauer, R.: A circular inclusion in a finite domain II. The Neumann–Eshelby problem. Acta. Mech. 179(1–2), 91–110 (2005)CrossRef
51.
Zurück zum Zitat Gao, X.L., Ma, H.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58(5), 779–797 (2010)CrossRefMathSciNetMATH Gao, X.L., Ma, H.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58(5), 779–797 (2010)CrossRefMathSciNetMATH
52.
Zurück zum Zitat Ma, H., Gao, X.L.: Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix. Int. J. Solids Struct. 48(1), 44–55 (2011)CrossRefMATH Ma, H., Gao, X.L.: Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix. Int. J. Solids Struct. 48(1), 44–55 (2011)CrossRefMATH
53.
Zurück zum Zitat Mejak, G.: Eshebly tensors for a finite spherical domain with an axisymmetric inclusion. Eur. J. Mech. A Solid 30(4), 477–490 (2011)CrossRefMathSciNetMATH Mejak, G.: Eshebly tensors for a finite spherical domain with an axisymmetric inclusion. Eur. J. Mech. A Solid 30(4), 477–490 (2011)CrossRefMathSciNetMATH
54.
Zurück zum Zitat Zou, W.N., He, Q.C., Zheng, Q.S.: Inclusions in a finite elastic body. Int. J. Solids Struct. 49(13), 1627–1636 (2012)CrossRef Zou, W.N., He, Q.C., Zheng, Q.S.: Inclusions in a finite elastic body. Int. J. Solids Struct. 49(13), 1627–1636 (2012)CrossRef
55.
Zurück zum Zitat Zou, W.N., He, Q.C.: Eshelby’s problem of a spherical inclusion eccentrically embedded in a finite spherical body. Proc. R. Soc. Lond. Ser. A 473(2198), 20160808 (2017)CrossRefMathSciNetMATH Zou, W.N., He, Q.C.: Eshelby’s problem of a spherical inclusion eccentrically embedded in a finite spherical body. Proc. R. Soc. Lond. Ser. A 473(2198), 20160808 (2017)CrossRefMathSciNetMATH
56.
Zurück zum Zitat Chen, Y.: Solution for Eshelby’s elastic inclusions in a finite plate using boundary integral equation method. Eng. Anal. Bound. Elem. 37(7–8), 1089–1094 (2013)CrossRefMathSciNetMATH Chen, Y.: Solution for Eshelby’s elastic inclusions in a finite plate using boundary integral equation method. Eng. Anal. Bound. Elem. 37(7–8), 1089–1094 (2013)CrossRefMathSciNetMATH
57.
Zurück zum Zitat Pan, C., Yu, Q.: Inclusion problem of a two-dimensional finite domain: the shape effect of matrix. Mech. Mater. 77, 86–97 (2014)CrossRef Pan, C., Yu, Q.: Inclusion problem of a two-dimensional finite domain: the shape effect of matrix. Mech. Mater. 77, 86–97 (2014)CrossRef
58.
Zurück zum Zitat Pan, C., Yu, Q.: Investigation of an arbitrarily shaped inclusion embedded in a two-dimensional finite domain. Int. J. Mech. Sci. 126, 142–150 (2017)CrossRef Pan, C., Yu, Q.: Investigation of an arbitrarily shaped inclusion embedded in a two-dimensional finite domain. Int. J. Mech. Sci. 126, 142–150 (2017)CrossRef
59.
Zurück zum Zitat Sharma, P., Sharma, R.: On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. J. Appl. Mech. 70(3), 418–425 (2003)CrossRefMATH Sharma, P., Sharma, R.: On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. J. Appl. Mech. 70(3), 418–425 (2003)CrossRefMATH
60.
Zurück zum Zitat Ma, L., Korsunsky, A.M.: The principle of equivalent eigenstrain for inhomogeneous inclusion problems. Int. J. Solids Struct. 51(25–26), 4477–4484 (2014)CrossRef Ma, L., Korsunsky, A.M.: The principle of equivalent eigenstrain for inhomogeneous inclusion problems. Int. J. Solids Struct. 51(25–26), 4477–4484 (2014)CrossRef
61.
Zurück zum Zitat Ma, L., Wang, B., Korsunsky, A.M.: Plane deformation of circular inhomogeneous inclusion problems with non-uniform symmetrical dilatational eigenstrain. Mater. Des. 86, 809–817 (2015)CrossRef Ma, L., Wang, B., Korsunsky, A.M.: Plane deformation of circular inhomogeneous inclusion problems with non-uniform symmetrical dilatational eigenstrain. Mater. Des. 86, 809–817 (2015)CrossRef
Metadaten
Titel
Analysis of a finite matrix with an inhomogeneous circular inclusion subjected to a non-uniform eigenstrain
verfasst von
Biao Wang
Wen Zhao
Lifeng Ma
Publikationsdatum
11.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 5/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01648-4

Weitere Artikel der Ausgabe 5/2020

Archive of Applied Mechanics 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.