Skip to main content
Erschienen in: Engineering with Computers 3/2018

24.11.2017 | Original Article

Analysis of axially functionally graded nano-tapered Timoshenko beams by element-based Bernstein pseudospectral collocation (EBBPC)

verfasst von: Sundaramoorthy Rajasekaran

Erschienen in: Engineering with Computers | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, static bending, buckling and free vibration of axially functionally graded (AFG) nano-tapered Timoshenko (NTTB) or Bernoulli Euler (NTEB) beams are examined based on the nonlocal Timoshenko beam theory (NTBT). This theory incorporates the length scale parameter (nonlocal parameter) to capture the small-scale effect. The material properties and geometry properties of the nanobeam are assumed to vary along the length direction. The governing equations and the associated boundary conditions are derived using Hamilton’s principle. The model is then applied on the studies of static, buckling and free vibration analysis of NTTB or NTEB using element-based Bernstein pseudo-spectral collocation approach (EBBPC). After the Bernstein pseudo-spectral collocation method is validated, detailed numerical analyses about the effect of boundary conditions, load types are carried out. Non-local parameter and axial load effects on the static and dynamic response of AFG-NTTB and AFG-NTEB are discussed. The approach is tested on benchmark problems of static, buckling and free vibration analyses, showing high accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ansari R, Sahmani S (2011) Bending behaviour and buckling of nanobeams including surface stress effect corresponding to different beam theories. Int J Eng Sci 49:1244–1255CrossRef Ansari R, Sahmani S (2011) Bending behaviour and buckling of nanobeams including surface stress effect corresponding to different beam theories. Int J Eng Sci 49:1244–1255CrossRef
2.
Zurück zum Zitat Cheng ACM, Yang F, Lam DCC, Tong P (2010) Torsion and bending of microscaled structures. J Mater Res 6104:1052–1058 Cheng ACM, Yang F, Lam DCC, Tong P (2010) Torsion and bending of microscaled structures. J Mater Res 6104:1052–1058
4.
Zurück zum Zitat Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435CrossRefMATH Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435CrossRefMATH
5.
Zurück zum Zitat Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH
6.
Zurück zum Zitat Karlicic. D, Murmu. T, Adhikari S, McVarthy M (2016) Nonlocal structural mechanics. Wiley, USA Karlicic. D, Murmu. T, Adhikari S, McVarthy M (2016) Nonlocal structural mechanics. Wiley, USA
7.
Zurück zum Zitat Sun CT, Zhang H (2003) Size dependent elastic moduli plate like nanomaterials. JAppl Phys 93(2):1212–1218CrossRef Sun CT, Zhang H (2003) Size dependent elastic moduli plate like nanomaterials. JAppl Phys 93(2):1212–1218CrossRef
8.
Zurück zum Zitat Liew QWang,KM (2007) Application of nonlocal continuum mechanics to static analysis of micro and nano structures. Phys Lett A 363:236–242CrossRef Liew QWang,KM (2007) Application of nonlocal continuum mechanics to static analysis of micro and nano structures. Phys Lett A 363:236–242CrossRef
9.
Zurück zum Zitat Reddy JN (2007) Nonlocal theory for bending buckling and vibration of beams. Int J Eng Sci 65:288–307CrossRefMATH Reddy JN (2007) Nonlocal theory for bending buckling and vibration of beams. Int J Eng Sci 65:288–307CrossRefMATH
10.
Zurück zum Zitat Lim CW, Wang CM (2007) Exact variational nonlocal stress modeling with asymptotic higher order strain gradients for nano beams. JAppl Phys 101:054312CrossRef Lim CW, Wang CM (2007) Exact variational nonlocal stress modeling with asymptotic higher order strain gradients for nano beams. JAppl Phys 101:054312CrossRef
11.
Zurück zum Zitat Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. JAppl Phy 103:023511CrossRef Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. JAppl Phy 103:023511CrossRef
12.
Zurück zum Zitat Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E Low Dimens Syst Nano Struct 41(9):1651–1655CrossRef Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E Low Dimens Syst Nano Struct 41(9):1651–1655CrossRef
13.
Zurück zum Zitat Wang CM, Kitipornchai S, Lim CW, Eisenberger M (2008) Beam bending solutions based on nonlocal Timoshenko beam theory. J Eng Mech ASCE 134(6):475–481CrossRef Wang CM, Kitipornchai S, Lim CW, Eisenberger M (2008) Beam bending solutions based on nonlocal Timoshenko beam theory. J Eng Mech ASCE 134(6):475–481CrossRef
14.
Zurück zum Zitat Civalek O, Demir C (2011) Bending analysis of microtubules using nonlocal. Euler Bernoulli Beam Theory 35:2053–2067MATH Civalek O, Demir C (2011) Bending analysis of microtubules using nonlocal. Euler Bernoulli Beam Theory 35:2053–2067MATH
15.
Zurück zum Zitat Wang Q, Varadan VK, Queck ST (2006) Small scale effect on elastic buckling of carbon nano tubes with nonlocal continuum models. Phys Lett A 357:130–135CrossRef Wang Q, Varadan VK, Queck ST (2006) Small scale effect on elastic buckling of carbon nano tubes with nonlocal continuum models. Phys Lett A 357:130–135CrossRef
16.
Zurück zum Zitat Pradhan. SC, Reddy GK (2011) Buckling analysis of single walled carbon nano tubes on Winkler foundation using nonlocal elasticity theory and DTM. Comp Mater Sci 50:1052–1056CrossRef Pradhan. SC, Reddy GK (2011) Buckling analysis of single walled carbon nano tubes on Winkler foundation using nonlocal elasticity theory and DTM. Comp Mater Sci 50:1052–1056CrossRef
17.
Zurück zum Zitat Ghannadpour SAM, Mohammadi B (2010) Buckling analysis of micro and nanorods/tubes based on nonlocal Timoshenko beam theory using Chebyshev polynomials. Adv Mat Res 123:619–622 Ghannadpour SAM, Mohammadi B (2010) Buckling analysis of micro and nanorods/tubes based on nonlocal Timoshenko beam theory using Chebyshev polynomials. Adv Mat Res 123:619–622
18.
Zurück zum Zitat Ansari R, Sahamani S, Rouki H (2011) Rayleigh Ritz axial buckling analysis of single walled carbon nano tubes with different boundary conditions. Phys Lett A 375:1255–1263CrossRef Ansari R, Sahamani S, Rouki H (2011) Rayleigh Ritz axial buckling analysis of single walled carbon nano tubes with different boundary conditions. Phys Lett A 375:1255–1263CrossRef
19.
Zurück zum Zitat Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727–1735CrossRef Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727–1735CrossRef
20.
Zurück zum Zitat Laxmi B (2015) Numerical solution of static and dynamic problems of nano beams and plates. Ph.D thesis, National Institute of Technology, Roorkela Laxmi B (2015) Numerical solution of static and dynamic problems of nano beams and plates. Ph.D thesis, National Institute of Technology, Roorkela
21.
Zurück zum Zitat Laxmi B, Chakraverty S (2014) Free vibration of euler and Timoshenko nanobeam using boundary characteristic orthogonal polynomials. Appl Nanosci 4:347–358CrossRef Laxmi B, Chakraverty S (2014) Free vibration of euler and Timoshenko nanobeam using boundary characteristic orthogonal polynomials. Appl Nanosci 4:347–358CrossRef
22.
Zurück zum Zitat Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10):105401 Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10):105401
23.
Zurück zum Zitat Hosseini-Ara R, Mirdamadi HR, Khademyzadeh H (2012) Buckling analysis of short carbon nanotubes based on a novel Timoshenko beam model. J Theor Appl Mech 50(4):975–986 Hosseini-Ara R, Mirdamadi HR, Khademyzadeh H (2012) Buckling analysis of short carbon nanotubes based on a novel Timoshenko beam model. J Theor Appl Mech 50(4):975–986
24.
Zurück zum Zitat Challamel N, Zhang Z, Wang CM (2015) Nonlocal Equivalent continua for buckling and vibration analyses of microstructured beams. J Nanomech Micromech ASCE 5(1):A4014004–A4014013CrossRef Challamel N, Zhang Z, Wang CM (2015) Nonlocal Equivalent continua for buckling and vibration analyses of microstructured beams. J Nanomech Micromech ASCE 5(1):A4014004–A4014013CrossRef
25.
Zurück zum Zitat Zhang YQ, Liu GR, Wang JS (2004) Small scale effects on buckling of multi-walled carbon nano tubes under axial compression. Phys Rev B 70:205430CrossRef Zhang YQ, Liu GR, Wang JS (2004) Small scale effects on buckling of multi-walled carbon nano tubes under axial compression. Phys Rev B 70:205430CrossRef
26.
Zurück zum Zitat Wang CM, Tan VBC, Zhang YY (2006) Timoshenko beam model for vibration analysis of multi-walled carbon nano-tubes. J Sound Vib 294:1060–1072CrossRef Wang CM, Tan VBC, Zhang YY (2006) Timoshenko beam model for vibration analysis of multi-walled carbon nano-tubes. J Sound Vib 294:1060–1072CrossRef
27.
Zurück zum Zitat Hashemi SH, Khaniki HB (2016) Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle. J Mech:1–17 Hashemi SH, Khaniki HB (2016) Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle. J Mech:1–17
28.
Zurück zum Zitat Khaniki HB, Hashemi SH (2017) Dynamic response of multiple nanobeam system under a moving nanoparticle. Alex Eng J Khaniki HB, Hashemi SH (2017) Dynamic response of multiple nanobeam system under a moving nanoparticle. Alex Eng J
29.
Zurück zum Zitat Chen J, Guo J, Pan E (2017) Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. J Sound Vib 400:550–563CrossRef Chen J, Guo J, Pan E (2017) Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. J Sound Vib 400:550–563CrossRef
30.
Zurück zum Zitat Khaniki HB, Hashemi SH (2017) Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle. Int J Eng Sci 115:51–72MathSciNetCrossRef Khaniki HB, Hashemi SH (2017) Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle. Int J Eng Sci 115:51–72MathSciNetCrossRef
31.
Zurück zum Zitat Wang YZ (2017) Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory. Appl Math Model 48:621–634MathSciNetCrossRef Wang YZ (2017) Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory. Appl Math Model 48:621–634MathSciNetCrossRef
32.
Zurück zum Zitat Karličić D, Kozić P, Pavlović R (2016) Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium. Appl Math Model 40(2):1599–1614MathSciNetCrossRef Karličić D, Kozić P, Pavlović R (2016) Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium. Appl Math Model 40(2):1599–1614MathSciNetCrossRef
33.
Zurück zum Zitat Mohammadimehr M, Managheb SAM, Alimirzaei S (2016) Nonlocal buckling and vibration analysis of triple-walled zno piezoelectric Timoshenko nano-beam subjected to magneto-electro-thermo-mechanical loadings. Mech Adv Compos Struct‎ 2(2):113–126 Mohammadimehr M, Managheb SAM, Alimirzaei S (2016) Nonlocal buckling and vibration analysis of triple-walled zno piezoelectric Timoshenko nano-beam subjected to magneto-electro-thermo-mechanical loadings. Mech Adv Compos Struct‎ 2(2):113–126
34.
Zurück zum Zitat Janghorban M (2012) Static analysis of tapered nanowires based on nonlocal Euler–Bernoulli beam theory via differential quadrature method. Latin Am J Solids Struct 1:1–10CrossRef Janghorban M (2012) Static analysis of tapered nanowires based on nonlocal Euler–Bernoulli beam theory via differential quadrature method. Latin Am J Solids Struct 1:1–10CrossRef
35.
Zurück zum Zitat Hashemi SH, Khaniki HB (2016) Analytical solution for free vibration of a variable cross-section nonlocal nanobeam. Int J Eng Trans B Appl 29(5):688–696 Hashemi SH, Khaniki HB (2016) Analytical solution for free vibration of a variable cross-section nonlocal nanobeam. Int J Eng Trans B Appl 29(5):688–696
36.
Zurück zum Zitat Hashemi SH, Khaniki HB (2017) Vibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory:an analytical solution. Int J Nano Dimens 8(1):70–81 Hashemi SH, Khaniki HB (2017) Vibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory:an analytical solution. Int J Nano Dimens 8(1):70–81
37.
Zurück zum Zitat Khaniki HB, Hashemi SH (2017) Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and generalized differential quadrature method. Mater Res Express 4:065003CrossRef Khaniki HB, Hashemi SH (2017) Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and generalized differential quadrature method. Mater Res Express 4:065003CrossRef
38.
Zurück zum Zitat Khaniki HB, Hashemi SH, Nezamabadi A (2017) Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method. Alex Eng J Khaniki HB, Hashemi SH, Nezamabadi A (2017) Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method. Alex Eng J
39.
Zurück zum Zitat Aranda-Ruiz J, Loya J, Fernández-Sáez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94(9):2990–3001CrossRef Aranda-Ruiz J, Loya J, Fernández-Sáez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94(9):2990–3001CrossRef
40.
Zurück zum Zitat Roostai H, Haghpanahi M (2014) Transverse vibration of a hanging nonuniform nanoscale tube based on nonlocal elasticity theory with surface effects. Acta Mech Solida Sin 27(2):202–209CrossRef Roostai H, Haghpanahi M (2014) Transverse vibration of a hanging nonuniform nanoscale tube based on nonlocal elasticity theory with surface effects. Acta Mech Solida Sin 27(2):202–209CrossRef
41.
Zurück zum Zitat Shafiei N, Kazemi M, Safi M, Ghadiri M (2016) Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int J Eng Sci 106:77–94CrossRef Shafiei N, Kazemi M, Safi M, Ghadiri M (2016) Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int J Eng Sci 106:77–94CrossRef
42.
Zurück zum Zitat Torabi K, Rahi M, Afshari H (2016) Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int J Eng Sci 106:77–94CrossRef Torabi K, Rahi M, Afshari H (2016) Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int J Eng Sci 106:77–94CrossRef
43.
Zurück zum Zitat Davis PJ (1963) Interpolation and approximation. Blaisdell Pub Co., BostonMATH Davis PJ (1963) Interpolation and approximation. Blaisdell Pub Co., BostonMATH
44.
Zurück zum Zitat Bhatti MI, Bracken P (2007) Solutions of differentia equations in Bernstein polynomial basis. J Comput Appl Math 205:272–280MathSciNetCrossRefMATH Bhatti MI, Bracken P (2007) Solutions of differentia equations in Bernstein polynomial basis. J Comput Appl Math 205:272–280MathSciNetCrossRefMATH
46.
Zurück zum Zitat Garijo; OF, Valencia FJG, Escalonilla, Lopez J (2014) Bernstein–Galerkin approach in elastostatics”. Proc Mech E Part C J Mech Eng Sci 228(3):391–404CrossRef Garijo; OF, Valencia FJG, Escalonilla, Lopez J (2014) Bernstein–Galerkin approach in elastostatics”. Proc Mech E Part C J Mech Eng Sci 228(3):391–404CrossRef
47.
Zurück zum Zitat Joy KI (2000) Bernstein polynomials, on-line geometric modeling notes Bernstein polynomials. Visualization and graphics research group. Department of Computer Science, University of California, Davis Joy KI (2000) Bernstein polynomials, on-line geometric modeling notes Bernstein polynomials. Visualization and graphics research group. Department of Computer Science, University of California, Davis
48.
Zurück zum Zitat Koizumi M (1993) Functionally gradient materials the concept of FGM. Ceram Trans 34:3–10 Koizumi M (1993) Functionally gradient materials the concept of FGM. Ceram Trans 34:3–10
49.
Zurück zum Zitat Koizumi M (1997) FGM activities in Japan. Compos Part B Eng 28:1–4 Koizumi M (1997) FGM activities in Japan. Compos Part B Eng 28:1–4
50.
Zurück zum Zitat Matbulya MS, Ragb O, Nassar M (2009) Natural frequencies of functionally graded cracked beam using the differential quadrature method. Math Comput 215:2307–2316MathSciNetMATH Matbulya MS, Ragb O, Nassar M (2009) Natural frequencies of functionally graded cracked beam using the differential quadrature method. Math Comput 215:2307–2316MathSciNetMATH
51.
Zurück zum Zitat .Kim GH, Paulino (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Meth Engg 53:1903–1935CrossRefMATH .Kim GH, Paulino (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Meth Engg 53:1903–1935CrossRefMATH
52.
Zurück zum Zitat Wakashima K, Hirano T, Nino M (1990) Space applications of advanced structural materials. Proc ESASP 303:97–102 Wakashima K, Hirano T, Nino M (1990) Space applications of advanced structural materials. Proc ESASP 303:97–102
53.
Zurück zum Zitat Pradhan SC, Sarkar A (2009) Analyses of tapered FGM beams with nonlocal theory. Struct Eng Mech 32(6):811–833CrossRef Pradhan SC, Sarkar A (2009) Analyses of tapered FGM beams with nonlocal theory. Struct Eng Mech 32(6):811–833CrossRef
54.
Zurück zum Zitat Wang. CM, Zhang. YY, Ramesh SS, Kitipornchai S (2006) Buckling analysis of micro and nano rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39:3904–3909CrossRef Wang. CM, Zhang. YY, Ramesh SS, Kitipornchai S (2006) Buckling analysis of micro and nano rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39:3904–3909CrossRef
Metadaten
Titel
Analysis of axially functionally graded nano-tapered Timoshenko beams by element-based Bernstein pseudospectral collocation (EBBPC)
verfasst von
Sundaramoorthy Rajasekaran
Publikationsdatum
24.11.2017
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2018
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-017-0557-3

Weitere Artikel der Ausgabe 3/2018

Engineering with Computers 3/2018 Zur Ausgabe

Neuer Inhalt