Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2018

12.02.2018

Analysis of Chemical Bonding and Structural Network of Gold Silicide in Core–Shell Silicon Nanowire

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Au-catalyzed core–shell silicon nanowires (Si-NWs) were synthesized by chemical vapor deposition by using SiH4 and H2 precursor gases. The TEM and FTIR studies revealed that the Si-NWs consist of core silicon surrounded by a thick oxide sheath and Au distributed at the a-SiOx/Si interface. The x-ray photoelectron spectroscopy (XPS) was used to study the chemical composition and electronic environments of gold silicide in the a-SiO x /Si-NWs. The elemental analysis and chemical network of gold silicide of core–shell Si-NWs were explained on the basis of the random atomic distribution of Si, O and Au atoms. The Raman spectra and XRD peak reveal the crystalline core of Si-NWs. The individual contribution to the Au (4d) core orbital was deconvoluted to Au-Si-Au, Au-Si-O, Au-Au, Au-O-Au, Au-O-Si and Au=O/Au-O2 bonding structure. The analysis shows that the O linked with Si and Au has also contributed to growth of Si-NWs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Shan and S.J. Fonash, Self-Assembling Silicon Nanowires for Device Applications Using the Nanochannel-Guided “Grow-in-Place” Approach, ACS Nano, 2008, 2(3), p 429–434CrossRef Y. Shan and S.J. Fonash, Self-Assembling Silicon Nanowires for Device Applications Using the Nanochannel-Guided “Grow-in-Place” Approach, ACS Nano, 2008, 2(3), p 429–434CrossRef
2.
Zurück zum Zitat Q. Li, S.M. Koo, M.D. Edelstein, J.S. Suehle, and C.A. Richter, Silicon Nanowire Electromechanical Switches for Logic Device Application, Nanotechnology, 2007, 18(31), p 315202–315206CrossRef Q. Li, S.M. Koo, M.D. Edelstein, J.S. Suehle, and C.A. Richter, Silicon Nanowire Electromechanical Switches for Logic Device Application, Nanotechnology, 2007, 18(31), p 315202–315206CrossRef
3.
Zurück zum Zitat B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources, Nature, 2007, 449, p 885–889CrossRef B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources, Nature, 2007, 449, p 885–889CrossRef
4.
Zurück zum Zitat B.S. Swain, B.P. Swain, and N.M. Hwang, Hydrogen Dilution-Induced Chemical State Modification in Silicon Nanowires, J. Phys. Chem. C, 2010, 11(36), p 15274–15279CrossRef B.S. Swain, B.P. Swain, and N.M. Hwang, Hydrogen Dilution-Induced Chemical State Modification in Silicon Nanowires, J. Phys. Chem. C, 2010, 11(36), p 15274–15279CrossRef
5.
Zurück zum Zitat J. Arbiol, B. Kalache, P.R.I. Cabarrocas, J.R. Morante, and A.F.I. Morral, Influence of Cu as a Catalyst on the Properties of Silicon Nanowires Synthesized by the Vapour–Solid–Solid Mechanism, Nanotechnology, 2007, 18(30), p 305606–305613CrossRef J. Arbiol, B. Kalache, P.R.I. Cabarrocas, J.R. Morante, and A.F.I. Morral, Influence of Cu as a Catalyst on the Properties of Silicon Nanowires Synthesized by the Vapour–Solid–Solid Mechanism, Nanotechnology, 2007, 18(30), p 305606–305613CrossRef
6.
Zurück zum Zitat A.M. Mohammad, S. Dey, K.K. Lew, J.M. Redwing, and S.E. Mohney, Fabrication of Cobalt Silicide Nanowire Contacts to Silicon Nanowires, J. Electrochem. Soc., 2003, 150(9), p G577–G580CrossRef A.M. Mohammad, S. Dey, K.K. Lew, J.M. Redwing, and S.E. Mohney, Fabrication of Cobalt Silicide Nanowire Contacts to Silicon Nanowires, J. Electrochem. Soc., 2003, 150(9), p G577–G580CrossRef
7.
Zurück zum Zitat I. Ahmad, M. Fay, Y. Xia, X. Hou, A. Kennedy, and Y. Zhu, Fe-Assisted Synthesis of Si Nanowires, J. Phys. Chem. C, 2009, 113(4), p 1286–1292CrossRef I. Ahmad, M. Fay, Y. Xia, X. Hou, A. Kennedy, and Y. Zhu, Fe-Assisted Synthesis of Si Nanowires, J. Phys. Chem. C, 2009, 113(4), p 1286–1292CrossRef
8.
Zurück zum Zitat J. Kim, J.U. Bae, W.A. Anderson, H.M. Kim, and K.B. Kim, Solid-State Growth of Nickel Silicide Nanowire by the Metal-Induced Growth Method, J. Mater. Res., 2006, 21, p 2936–2940CrossRef J. Kim, J.U. Bae, W.A. Anderson, H.M. Kim, and K.B. Kim, Solid-State Growth of Nickel Silicide Nanowire by the Metal-Induced Growth Method, J. Mater. Res., 2006, 21, p 2936–2940CrossRef
9.
Zurück zum Zitat S.H. Christiansen, M. Becker, S. Fahlbusch, J. Michler, V. Sivakov, G. Andra, and R. Geiger, Signal Enhancement in Nano-Raman Spectroscopy by Gold Caps on Silicon Nanowires Obtained by Vapour–Liquid–Solid Growth, Nanotechnology, 2007, 18, p 035503CrossRef S.H. Christiansen, M. Becker, S. Fahlbusch, J. Michler, V. Sivakov, G. Andra, and R. Geiger, Signal Enhancement in Nano-Raman Spectroscopy by Gold Caps on Silicon Nanowires Obtained by Vapour–Liquid–Solid Growth, Nanotechnology, 2007, 18, p 035503CrossRef
10.
Zurück zum Zitat C.C. Buttner, N.D. Zakharov, E. Pippel, U. Gosele, and P. Werner, Gold-Enhanced Oxidation of MBE-Grown Silicon Nanowires, Semicond. Sci. Technol., 2008, 23, p 075040CrossRef C.C. Buttner, N.D. Zakharov, E. Pippel, U. Gosele, and P. Werner, Gold-Enhanced Oxidation of MBE-Grown Silicon Nanowires, Semicond. Sci. Technol., 2008, 23, p 075040CrossRef
11.
Zurück zum Zitat J.B. Hannon, S. Kodambaka, F.M. Ross, and R.M. Tromp, The Influence of the Surface Migration of Gold on The Growth of Silicon Nanowires, Nature, 2006, 440, p 69–71CrossRef J.B. Hannon, S. Kodambaka, F.M. Ross, and R.M. Tromp, The Influence of the Surface Migration of Gold on The Growth of Silicon Nanowires, Nature, 2006, 440, p 69–71CrossRef
12.
Zurück zum Zitat P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, and U. Gösele, On the Formation of Si Nanowires by Molecular Beam Epitaxy, Int. J. Mater. Res., 2006, 97, p 1008–1015CrossRef P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, and U. Gösele, On the Formation of Si Nanowires by Molecular Beam Epitaxy, Int. J. Mater. Res., 2006, 97, p 1008–1015CrossRef
13.
Zurück zum Zitat L. Pan, K. Lew, J.M. Redwing, and E.C. Dickey, Effect of Diborane on the Microstructure of Boron-Doped Silicon Nanowires, J. Cryst. Growth, 2005, 277(1–4), p 428–436CrossRef L. Pan, K. Lew, J.M. Redwing, and E.C. Dickey, Effect of Diborane on the Microstructure of Boron-Doped Silicon Nanowires, J. Cryst. Growth, 2005, 277(1–4), p 428–436CrossRef
14.
Zurück zum Zitat Y. Li, W. Shi, A. Gupta, and N. Chopra, Morphological Evolution of Gold Nanoparticles on Silicon Nanowires and Their Plasmonics, RSC Adv., 2015, 5, p 49708–49718CrossRef Y. Li, W. Shi, A. Gupta, and N. Chopra, Morphological Evolution of Gold Nanoparticles on Silicon Nanowires and Their Plasmonics, RSC Adv., 2015, 5, p 49708–49718CrossRef
15.
Zurück zum Zitat B.S. Swain, B.P. Swain, K. Mahmood, S.-M. Yang, and N.-M. Hwang, Structural and Optical Properties of H2 Diluted c-Si/a-SiOx Core-Shell Silicon Nanowire, Appl. Phys. A Mater. Sci. Process., 2014, 118(1), p 269–274CrossRef B.S. Swain, B.P. Swain, K. Mahmood, S.-M. Yang, and N.-M. Hwang, Structural and Optical Properties of H2 Diluted c-Si/a-SiOx Core-Shell Silicon Nanowire, Appl. Phys. A Mater. Sci. Process., 2014, 118(1), p 269–274CrossRef
16.
Zurück zum Zitat B.S. Swain, B.P. Swain, and N.M. Hwang, Chemical Surface Passivation of Silicon Nanowires Grown by APCVD, Curr. Appl. Phys., 2010, 10(3), p S439–S442CrossRef B.S. Swain, B.P. Swain, and N.M. Hwang, Chemical Surface Passivation of Silicon Nanowires Grown by APCVD, Curr. Appl. Phys., 2010, 10(3), p S439–S442CrossRef
17.
Zurück zum Zitat M. Kirkham, Z.L. Wang, and R.L. Snyder, Tracking the Catalyzed Growth Process of Nanowires by in Situ X-Ray Diffraction, J. Appl. Phys., 2010, 108, p 014304CrossRef M. Kirkham, Z.L. Wang, and R.L. Snyder, Tracking the Catalyzed Growth Process of Nanowires by in Situ X-Ray Diffraction, J. Appl. Phys., 2010, 108, p 014304CrossRef
18.
Zurück zum Zitat B.S. Swain, S.S. Lee, Sang H. Lee, B.P. Swain, and N.M. Hwang, Effect of H2 Ambient Annealing on Silicon Nanowires Prepared by Atmospheric Pressure Chemical Vapor Deposition, Chem. Phys. Lett., 2010, 494, p 269–273CrossRef B.S. Swain, S.S. Lee, Sang H. Lee, B.P. Swain, and N.M. Hwang, Effect of H2 Ambient Annealing on Silicon Nanowires Prepared by Atmospheric Pressure Chemical Vapor Deposition, Chem. Phys. Lett., 2010, 494, p 269–273CrossRef
19.
Zurück zum Zitat Y. Sohn, D. Pradhan, A. Radi, and K.T. Leung, Interfacial Electronic Structure of Gold Nanoparticles on Si(100): Alloying Versus Quantum Size Effects, Langmuir, 2009, 25(16), p 9557–9563CrossRef Y. Sohn, D. Pradhan, A. Radi, and K.T. Leung, Interfacial Electronic Structure of Gold Nanoparticles on Si(100): Alloying Versus Quantum Size Effects, Langmuir, 2009, 25(16), p 9557–9563CrossRef
20.
Zurück zum Zitat O. Domichil, V. Calvo, A. Besson, P. Noe, B. Solem, N. Pouc, F. Oehler, P. Gentel, and N. Magnea, Surface Recombination Velocity Measurements of Efficiently Passivated Gold-Catalyzed Silicon Nanowires by a New Optical Method, Nano Lett., 2010, 10(7), p 2323–2329CrossRef O. Domichil, V. Calvo, A. Besson, P. Noe, B. Solem, N. Pouc, F. Oehler, P. Gentel, and N. Magnea, Surface Recombination Velocity Measurements of Efficiently Passivated Gold-Catalyzed Silicon Nanowires by a New Optical Method, Nano Lett., 2010, 10(7), p 2323–2329CrossRef
21.
Zurück zum Zitat D.C. Lim, I.L. Salido, R. Dietsche, M. Bubek, and Y.D. Kim, Electronic and Chemical Properties of Supported Au Nanoparticles, Chem. Phys., 2006, 330(3), p 441–448CrossRef D.C. Lim, I.L. Salido, R. Dietsche, M. Bubek, and Y.D. Kim, Electronic and Chemical Properties of Supported Au Nanoparticles, Chem. Phys., 2006, 330(3), p 441–448CrossRef
22.
Zurück zum Zitat K. Yang, H. Wang, K. Zou, and X. Zhang, Gold Nanoparticle Modified Silicon Nanowires as Biosensors, Nanotechnology, 2006, 17(11), p S276–S279CrossRef K. Yang, H. Wang, K. Zou, and X. Zhang, Gold Nanoparticle Modified Silicon Nanowires as Biosensors, Nanotechnology, 2006, 17(11), p S276–S279CrossRef
23.
Zurück zum Zitat D.C. Lim, I.L. Salido, R. Dietsche, M. Bubek, and Y.D. Kim, Electronic and Chemical Properties of Supported Au Nanoparticles, Chem. Phys., 2006, 330(3), p 441–448CrossRef D.C. Lim, I.L. Salido, R. Dietsche, M. Bubek, and Y.D. Kim, Electronic and Chemical Properties of Supported Au Nanoparticles, Chem. Phys., 2006, 330(3), p 441–448CrossRef
Metadaten
Titel
Analysis of Chemical Bonding and Structural Network of Gold Silicide in Core–Shell Silicon Nanowire
Publikationsdatum
12.02.2018
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3218-9

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Engineering and Performance 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.