Skip to main content
Erschienen in: Microsystem Technologies 10/2020

30.06.2018 | Technical Paper

Analysis of CMOS 0.18 μm UWB low noise amplifier for wireless application

verfasst von: Ch. Anandini, F. A. Talukdar, C. L. Singh, Ram Kumar, R. Raja

Erschienen in: Microsystem Technologies | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a 0.18 μm CMOS LNA is designed which is favorable for a wireless application and the topology used in this design is cascode inductive source degeneration. This proposed LNA is basically designed for ultra-wideband which will be suitable for RF receiver. For an LNA to be in RF receiver, the LNA must be able to amplify very weak signal of – 100 dBm (3.2 uV), must consume very minimum power and lastly, noise generated by LNA must be very small. These requirements are achieved with help of cascode inductive source degeneration topology. This work also presents noise analysis of MOSFET along with LNA’s noise and other parameters analysis. Possible types of topologies are also discussed. The proposed LNA provides a good gain of 19.79 dB, an NF of 2.03 dB, reverse isolation (S12) of − 35.2 dB, input return loss (S11) of − 12.2 dB, and output return loss (S22) of − 12 dB, while consuming 10.8 mW from the supply of 1.8 V. The proposed LNA is simulated in Cadence Spectra using 180 nm UMC technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Balodi D, Verma A, Govidacharyulu PA (2016) A high gain low noise amplifier design & comparative analysis with other MOS-topologies for Bluetooth applications at 130 nm CMOS. In: Proceedings of IEEE industrial electronics and applications conference, pp 378–383 Balodi D, Verma A, Govidacharyulu PA (2016) A high gain low noise amplifier design & comparative analysis with other MOS-topologies for Bluetooth applications at 130 nm CMOS. In: Proceedings of IEEE industrial electronics and applications conference, pp 378–383
Zurück zum Zitat Bhale VP, Dalal UD (2014) Optimization of CMOS 0.18 μm low noise amplifier for wireless applications. Int J Inf Electron Eng 4(2):92–97 Bhale VP, Dalal UD (2014) Optimization of CMOS 0.18 μm low noise amplifier for wireless applications. Int J Inf Electron Eng 4(2):92–97
Zurück zum Zitat Chiu H-W, Lu S-S, Lin Y-S (2005) A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption. IEEE Trans Microw Theory Tech 53(3):813–824CrossRef Chiu H-W, Lu S-S, Lin Y-S (2005) A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption. IEEE Trans Microw Theory Tech 53(3):813–824CrossRef
Zurück zum Zitat Chu Y, Liao C, Chuang H (2003) 5.7 GHz 0.18/spl mu/m CMOS gain-controlled LNA and mixer for 802.11a WLAN applications. In: Proceedings of IEEE radio frequency integrated circuits symposium, pp 221–224 Chu Y, Liao C, Chuang H (2003) 5.7 GHz 0.18/spl mu/m CMOS gain-controlled LNA and mixer for 802.11a WLAN applications. In: Proceedings of IEEE radio frequency integrated circuits symposium, pp 221–224
Zurück zum Zitat Feng YuX, Lim WM, Gu J, Sui W (2013) Compact 50–62 GHz current-reused low-noise amplifier with gate-drain transformer feedback. Electron Lett 49(11):720–722CrossRef Feng YuX, Lim WM, Gu J, Sui W (2013) Compact 50–62 GHz current-reused low-noise amplifier with gate-drain transformer feedback. Electron Lett 49(11):720–722CrossRef
Zurück zum Zitat Gatta F et al (2001) A 2-dB noise figure 900-MHz differential CMOS LNA. IEEE J Solid State Circuits 36(10):1444–1452CrossRef Gatta F et al (2001) A 2-dB noise figure 900-MHz differential CMOS LNA. IEEE J Solid State Circuits 36(10):1444–1452CrossRef
Zurück zum Zitat Guo W, Huang D (2002) The noise and linearity optimization for 1.9 GHz CMOS low noise amplifier. In: Proceedings of IEEE Asia Pacific conference on ASIC, pp 253–257 Guo W, Huang D (2002) The noise and linearity optimization for 1.9 GHz CMOS low noise amplifier. In: Proceedings of IEEE Asia Pacific conference on ASIC, pp 253–257
Zurück zum Zitat Han K et al (2005) Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier. IEEE J Solid State Circuits 40(3):726–735CrossRef Han K et al (2005) Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier. IEEE J Solid State Circuits 40(3):726–735CrossRef
Zurück zum Zitat Huang Z-Y, Huang C-C (2007) A CMOS low noise amplifier with RLC-impedance feedback for 3–5 GHz ultra-wideband wireless system. In: Proceedings of IEEE international symposium on integrated circuits, pp 600–603 Huang Z-Y, Huang C-C (2007) A CMOS low noise amplifier with RLC-impedance feedback for 3–5 GHz ultra-wideband wireless system. In: Proceedings of IEEE international symposium on integrated circuits, pp 600–603
Zurück zum Zitat Ibrahim AB, Othman AR, Husain MN, Johal MS (2012) The cascode and cascaded techniques LNA at 5.8 GHz using T-matching network for WiMAX applications. Int J Comput Theory Eng 4(1):93–97CrossRef Ibrahim AB, Othman AR, Husain MN, Johal MS (2012) The cascode and cascaded techniques LNA at 5.8 GHz using T-matching network for WiMAX applications. Int J Comput Theory Eng 4(1):93–97CrossRef
Zurück zum Zitat Jafarnejad R, Jannesaria A, Sobhib J (2017a) Pre-distortion technique to improve linearity of low noise amplifier. Microelectron J 61:95–105CrossRef Jafarnejad R, Jannesaria A, Sobhib J (2017a) Pre-distortion technique to improve linearity of low noise amplifier. Microelectron J 61:95–105CrossRef
Zurück zum Zitat Jafarnejad R, Jannesari A, Sobhi J (2017b) A linear ultra wide band low noise amplifier using pre-distortion technique. Int J Electron Commun 79:172–183CrossRef Jafarnejad R, Jannesari A, Sobhi J (2017b) A linear ultra wide band low noise amplifier using pre-distortion technique. Int J Electron Commun 79:172–183CrossRef
Zurück zum Zitat Kumar R, Kumar M, Srivastava VM (2012) Design and noise optimization for an RF low noise amplifier. Int J VLSI Des Commun Syst 3(2):165–173CrossRef Kumar R, Kumar M, Srivastava VM (2012) Design and noise optimization for an RF low noise amplifier. Int J VLSI Des Commun Syst 3(2):165–173CrossRef
Zurück zum Zitat Kumar R, Devi A, Sarkar A, Talukdar FA (2016) Design of 5.5 GHz linear low noise amplifier using post-distortion technique with body biasing. Microsyst Technol 22(11):2681–2690CrossRef Kumar R, Devi A, Sarkar A, Talukdar FA (2016) Design of 5.5 GHz linear low noise amplifier using post-distortion technique with body biasing. Microsyst Technol 22(11):2681–2690CrossRef
Zurück zum Zitat Lee TH (1998) The design of CMOS radio-frequency integrated circuits. Cambridge University Press, Cambridge Lee TH (1998) The design of CMOS radio-frequency integrated circuits. Cambridge University Press, Cambridge
Zurück zum Zitat Liao CH, Chuang HR (2003) A 5.7 GHz 0.18 nm CMOS gain-controlled differential LNA with current reuse for WLAN receiver. IEEE Microw Wirel Compon Lett 13(12):526–528CrossRef Liao CH, Chuang HR (2003) A 5.7 GHz 0.18 nm CMOS gain-controlled differential LNA with current reuse for WLAN receiver. IEEE Microw Wirel Compon Lett 13(12):526–528CrossRef
Zurück zum Zitat Meaamar Chye BC, Anh M, Seng YK (2009) A 3 to 8 GHz low noise CMOS amplifier. IEEE Microw Wirel Compon Lett 19(4):245–247CrossRef Meaamar Chye BC, Anh M, Seng YK (2009) A 3 to 8 GHz low noise CMOS amplifier. IEEE Microw Wirel Compon Lett 19(4):245–247CrossRef
Zurück zum Zitat Nejati H, Ragheb T, Nieuwoudt A, Massoud Y (2007) Modeling and design of ultrawideband low noise amplifiers with generalized impedance matching networks. In: Proceedings of IEEE ISCAS, pp 2622–2625 Nejati H, Ragheb T, Nieuwoudt A, Massoud Y (2007) Modeling and design of ultrawideband low noise amplifiers with generalized impedance matching networks. In: Proceedings of IEEE ISCAS, pp 2622–2625
Zurück zum Zitat Nejati H, Ragheb T, Massoud Y (2008) Analytical modeling of common-gate low noise amplifiers. In: Proceedings of IEEE ISCAS, pp 888–891 Nejati H, Ragheb T, Massoud Y (2008) Analytical modeling of common-gate low noise amplifiers. In: Proceedings of IEEE ISCAS, pp 888–891
Zurück zum Zitat Oluwajobi FI, Wasiu L (2014) Multisim design and simulation of 2.2 GHz LNA for wireless communication. Int J VLSI Des Commun Syst 5(4):65–74CrossRef Oluwajobi FI, Wasiu L (2014) Multisim design and simulation of 2.2 GHz LNA for wireless communication. Int J VLSI Des Commun Syst 5(4):65–74CrossRef
Zurück zum Zitat Park B, Choi S, Hong S (2010) A low noise amplifier with tunable interference rejection for 3.1 to 10.6 GHz UWB systems. IEEE Microw Wirel Compon Lett 20(1):40–42CrossRef Park B, Choi S, Hong S (2010) A low noise amplifier with tunable interference rejection for 3.1 to 10.6 GHz UWB systems. IEEE Microw Wirel Compon Lett 20(1):40–42CrossRef
Zurück zum Zitat Rastegar H, Ryu J-Y (2015) A broadband low noise amplifier with built-in linearizer in 0.13-mm CMOS process. Microelectron J 46(8):698–705CrossRef Rastegar H, Ryu J-Y (2015) A broadband low noise amplifier with built-in linearizer in 0.13-mm CMOS process. Microelectron J 46(8):698–705CrossRef
Zurück zum Zitat Rastegar H, Saryazdi S, Hakimi A (2013) A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in 0.13 mm CMOS process. Microelectron J 44(3):201–209CrossRef Rastegar H, Saryazdi S, Hakimi A (2013) A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in 0.13 mm CMOS process. Microelectron J 44(3):201–209CrossRef
Zurück zum Zitat Razavi Behzad (2011) RF microelectronics, 2nd edn. Prentice Hall, New York Razavi Behzad (2011) RF microelectronics, 2nd edn. Prentice Hall, New York
Zurück zum Zitat Razavi B (2013) Design of analog CMOS integrated circuits. McGraw Hill Education Private Limited, Chennai Razavi B (2013) Design of analog CMOS integrated circuits. McGraw Hill Education Private Limited, Chennai
Zurück zum Zitat Shaeffer DK, Lee TH (1997) A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid State Circuits 32(5):745–759CrossRef Shaeffer DK, Lee TH (1997) A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid State Circuits 32(5):745–759CrossRef
Zurück zum Zitat Wei YL, Jin JD (2009) A low power low noise amplifier for K-band applications. IEEE Microw Wirel Compon Lett 19(2):116–118CrossRef Wei YL, Jin JD (2009) A low power low noise amplifier for K-band applications. IEEE Microw Wirel Compon Lett 19(2):116–118CrossRef
Metadaten
Titel
Analysis of CMOS 0.18 μm UWB low noise amplifier for wireless application
verfasst von
Ch. Anandini
F. A. Talukdar
C. L. Singh
Ram Kumar
R. Raja
Publikationsdatum
30.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4005-0

Weitere Artikel der Ausgabe 10/2020

Microsystem Technologies 10/2020 Zur Ausgabe

Neuer Inhalt