Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2017

28.09.2016

Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications

verfasst von: Amandeep Singh, Mamta Khosla, Balwinder Raj

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the analysis of electrostatic doped Schottky barrier carbon nanotube FET (ED-SBCNTFET) for low power applications. Electrostatic doping is introduced in intrinsic CNT as a channel material which reduces the process complexity; moreover dynamic configuration provides symmetric transfer characteristics for n-type and p-type for ED-SBCNTFET. Simulation results demonstrate that ED-SBCNTFET is better than conventional CNTFET in terms of IOFF and subthreshold swing (SS) which makes it suitable for low power applications. Simulations are performed and sensitivity analysis is carried out for CNT diameter, effective oxide thickness (EOT), high-k dielectric and polarity gate bias. It is observed that CNTs are most sensitive to diameter, since CNT with diameter 0.85 nm exhibits ION/IOFF ratio of ~109 and SS of 60.8 mv/dec whereas diameter of 0.55 nm results into ION/IOFF ratio of ~1011 with SS of 58.5 mv/dec. Optimized parameters are proposed for low power applications in terms of IOFF and SS. ED-SBCNTFET has been analysed for various process parameters and it has been demonstrated to be less sensitive to process variations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)CrossRef P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)CrossRef
2.
Zurück zum Zitat T. Dürkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004)CrossRef T. Dürkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004)CrossRef
3.
Zurück zum Zitat Ali Javey, Jing Guo, Qian Wang, Mark Lundstrom, Hongjie Dai, Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654–657 (2003)CrossRef Ali Javey, Jing Guo, Qian Wang, Mark Lundstrom, Hongjie Dai, Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654–657 (2003)CrossRef
4.
Zurück zum Zitat P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)CrossRef P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)CrossRef
5.
Zurück zum Zitat J. Svensson, E.B. Campbell, Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 110(11), 111101-1–111101-16 (2011)CrossRef J. Svensson, E.B. Campbell, Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 110(11), 111101-1–111101-16 (2011)CrossRef
6.
Zurück zum Zitat Joerg Appenzeller, Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. on Electron Devices 52(12), 2568–2576 (2005)CrossRef Joerg Appenzeller, Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. on Electron Devices 52(12), 2568–2576 (2005)CrossRef
7.
Zurück zum Zitat Y.-M. Lin, J. Appenzeller, J. Knoch, P. Avouris, High performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. on Nanotechnol. 4(5), 481–489 (2005)CrossRef Y.-M. Lin, J. Appenzeller, J. Knoch, P. Avouris, High performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. on Nanotechnol. 4(5), 481–489 (2005)CrossRef
8.
Zurück zum Zitat A. Javey, R. Tu, D. Farmer, J. Guo, R. Gordon, H. Dai, High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5(2), 345–348 (2005)CrossRef A. Javey, R. Tu, D. Farmer, J. Guo, R. Gordon, H. Dai, High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5(2), 345–348 (2005)CrossRef
9.
Zurück zum Zitat J. Knoch, M.R. Muller, Electrostatic Doping—Controlling the Properties of Carbon-Based FETs With Gates. IEEE Trans. on Nanotechnol. 13(6), 1044–1052 (2014)CrossRef J. Knoch, M.R. Muller, Electrostatic Doping—Controlling the Properties of Carbon-Based FETs With Gates. IEEE Trans. on Nanotechnol. 13(6), 1044–1052 (2014)CrossRef
10.
Zurück zum Zitat A. Lahgere, C. Sahu, J. Singh, PVT-aware design of dopingless dynamically configurable tunnel FET. IEEE Trans. on Electron Devices 62(8), 2404–2409 (2015)CrossRef A. Lahgere, C. Sahu, J. Singh, PVT-aware design of dopingless dynamically configurable tunnel FET. IEEE Trans. on Electron Devices 62(8), 2404–2409 (2015)CrossRef
11.
Zurück zum Zitat Sangeeta Singh, P.N. Kondekar, A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices and Microstruct. 88, 695–703 (2015)CrossRef Sangeeta Singh, P.N. Kondekar, A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices and Microstruct. 88, 695–703 (2015)CrossRef
12.
Zurück zum Zitat K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. of the IEEE 91(2), 305–327 (2003)CrossRef K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. of the IEEE 91(2), 305–327 (2003)CrossRef
13.
Zurück zum Zitat V.K. Sharma, M. Pattanaik, B. Raj, PVT variations aware low leakage INDEP approach for nanoscale CMOS Circuits. Microelectron. Reliab. 54, 90–99 (2014)CrossRef V.K. Sharma, M. Pattanaik, B. Raj, PVT variations aware low leakage INDEP approach for nanoscale CMOS Circuits. Microelectron. Reliab. 54, 90–99 (2014)CrossRef
14.
Zurück zum Zitat V.K. Sharma, M. Pattanaik, Balwinder Raj, INDEP approach for leakage reduction in nanoscale CMOS circuits. Int. J. Electron., Taylor & Francis 102(2), 200–215 (2015) V.K. Sharma, M. Pattanaik, Balwinder Raj, INDEP approach for leakage reduction in nanoscale CMOS circuits. Int. J. Electron., Taylor & Francis 102(2), 200–215 (2015)
15.
Zurück zum Zitat Amandeep Singh, Mamta Khosla, Balwinder Raj, Comparative Analysis of Carbon Nanotube Field Effect Transistor and Nanowire Transistor for Low Power Circuit Design. J. Nanoelectron. and Optoelectron. 11(3), 388–393 (2016)CrossRef Amandeep Singh, Mamta Khosla, Balwinder Raj, Comparative Analysis of Carbon Nanotube Field Effect Transistor and Nanowire Transistor for Low Power Circuit Design. J. Nanoelectron. and Optoelectron. 11(3), 388–393 (2016)CrossRef
16.
Zurück zum Zitat Karmjit Singh, Balwinder Raj, Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes. J. Mater. Sci.: Mater. in Electron. 26(8), 6134–6142 (2015) Karmjit Singh, Balwinder Raj, Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes. J. Mater. Sci.: Mater. in Electron. 26(8), 6134–6142 (2015)
17.
Zurück zum Zitat G. Fiori, G. Iannaccone, NanoTCAD ViDES, 2008 G. Fiori, G. Iannaccone, NanoTCAD ViDES, 2008
18.
Zurück zum Zitat Amandeep Singh, Mamta Khosla, Balwinder Raj, Circuit compatible model for Electrostatic Doped Schottky Barrier CNTFET. J. Electron. Mater. 45(10), 5381–5390 (2016)CrossRef Amandeep Singh, Mamta Khosla, Balwinder Raj, Circuit compatible model for Electrostatic Doped Schottky Barrier CNTFET. J. Electron. Mater. 45(10), 5381–5390 (2016)CrossRef
19.
Zurück zum Zitat X. Yang, K. Mohanram, Modeling and performance investigation of the double-gate carbon nanotube transistor. IEEE Electron Device Lett. 32(3), 231–233 (2011)CrossRef X. Yang, K. Mohanram, Modeling and performance investigation of the double-gate carbon nanotube transistor. IEEE Electron Device Lett. 32(3), 231–233 (2011)CrossRef
20.
Zurück zum Zitat J. Guo, S. Datta, M. Lundstrom, M. Brink, P. McEuen, A. Javey, H. Dai, H. Kim, P. McIntyre, Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors. Electron Devices Meeting, 2002. IEDM ‘02. Int. 711–714 (2002) J. Guo, S. Datta, M. Lundstrom, M. Brink, P. McEuen, A. Javey, H. Dai, H. Kim, P. McIntyre, Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors. Electron Devices Meeting, 2002. IEDM ‘02. Int. 711–714 (2002)
21.
Zurück zum Zitat Sujeet Kumar Sinha, Santanu Chaudhury, Impact of oxide thickness on gate capacitance—a comprehensive analysis on MOSFET, nanowire FET, and CNTFET devices. IEEE Trans. on Nanotechnol. 12(6), 958–964 (2013)CrossRef Sujeet Kumar Sinha, Santanu Chaudhury, Impact of oxide thickness on gate capacitance—a comprehensive analysis on MOSFET, nanowire FET, and CNTFET devices. IEEE Trans. on Nanotechnol. 12(6), 958–964 (2013)CrossRef
22.
Zurück zum Zitat A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai, High K dielectrics for advanced carbon nanotube transistors and logic. Nature Mater. 1(4), 241–246 (2002)CrossRef A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai, High K dielectrics for advanced carbon nanotube transistors and logic. Nature Mater. 1(4), 241–246 (2002)CrossRef
23.
Zurück zum Zitat J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: model of the intrinsic channel region. IEEE Trans. on Electron Devices 54(12), 3186–3194 (2007)CrossRef J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: model of the intrinsic channel region. IEEE Trans. on Electron Devices 54(12), 3186–3194 (2007)CrossRef
24.
Zurück zum Zitat J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: full device model and circuit performance benchmarking. IEEE Trans. on Electron Devices 54(12), 3195–3205 (2007)CrossRef J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: full device model and circuit performance benchmarking. IEEE Trans. on Electron Devices 54(12), 3195–3205 (2007)CrossRef
Metadaten
Titel
Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications
verfasst von
Amandeep Singh
Mamta Khosla
Balwinder Raj
Publikationsdatum
28.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5723-7

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Science: Materials in Electronics 2/2017 Zur Ausgabe

Neuer Inhalt