Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-8/2019

30.04.2019 | ORIGINAL ARTICLE

Analytical modeling of residual stress in orthogonal cutting considering tool edge radius effect

verfasst von: Dong Yang, Xiao Xiao, Xiaoliang Liang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machining-induced residual stress is a leading cause of machining distortion. Many previous studies have been performed to model the relationship between various impact factors and machined residual stress, such as cutting parameters, lubrication, and cooling conditions etc. While few analytic studies examining the size effect of tool edge radius on residual stress have been performed. In order to better understanding the size effect of tool edge radius on machining-induced residual stress, thermomechanical coupling loading and unloading operations are applied to obtain the machining-induced residual stress on the basis of modeling mechanical loads and thermal loads for cutting with edge radiused cutters. Verification experimental results indicate that the proposed model is effective in judging and analyzing the characteristics of the residual stress profile beneath the machined surface in consideration of the tool edge radius effect. By case studies of Ti-6Al-4V turning those based on the proposed model, it was found that the value of surface residual stress increased with the tool edge radius changed from 0.01 mm to 0.03 mm, and the increased percentage of stresses in cutting and cutting width directions could be 132.6% and 191.1%, respectively. While the peak value of the compressive stress and the depth of the peak value decreased gradually, and the decreased percentages of the peak value of the compressive stress in cutting and cutting width directions are 77.8% and 88.6%. The decreased percentages of the depth of the peak value in cutting and cutting width directions are 47.6% and 63.5%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ratchev S, Huang W, Liu S, Becker A (2004) Modelling and simulation environment for machining of low-rigidity components. J Mater Process Technol 153:67–73CrossRef Ratchev S, Huang W, Liu S, Becker A (2004) Modelling and simulation environment for machining of low-rigidity components. J Mater Process Technol 153:67–73CrossRef
2.
Zurück zum Zitat Saini S, Ahuja SI, Sharma VS (2013) Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int J Adv Manuf Technol 65(5–8):667–678CrossRef Saini S, Ahuja SI, Sharma VS (2013) Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int J Adv Manuf Technol 65(5–8):667–678CrossRef
3.
Zurück zum Zitat Masmiati N, Sarhan A (2015) Optimizing cutting parameters in inclined end milling for minimum surface residual stress-Taguchi approach. Meas 60:267–275CrossRef Masmiati N, Sarhan A (2015) Optimizing cutting parameters in inclined end milling for minimum surface residual stress-Taguchi approach. Meas 60:267–275CrossRef
4.
Zurück zum Zitat Xu Z, Wu H (2018) Effect of tool angle on cutting force and residual stress in the oblique cutting of TC21 alloy. Int J Adv Manuf Technol 98(1-4):791–797. Xu Z, Wu H (2018) Effect of tool angle on cutting force and residual stress in the oblique cutting of TC21 alloy. Int J Adv Manuf Technol 98(1-4):791–797.
5.
Zurück zum Zitat Oliveira G, Fonseca M, Araujo A (2017) Analysis of residual stress and cutting force in end milling of Inconel 718 using conventional flood cooling and minimum quantity lubrication. Int J Adv Manuf Technol 92(9–12):1–8 Oliveira G, Fonseca M, Araujo A (2017) Analysis of residual stress and cutting force in end milling of Inconel 718 using conventional flood cooling and minimum quantity lubrication. Int J Adv Manuf Technol 92(9–12):1–8
6.
Zurück zum Zitat Ji X, Zhang X, Liang S (2014) Predictive modeling of residual stress in minimum quantity lubrication machining. Int J Adv Manuf Technol 70(9–12):2159–2168CrossRef Ji X, Zhang X, Liang S (2014) Predictive modeling of residual stress in minimum quantity lubrication machining. Int J Adv Manuf Technol 70(9–12):2159–2168CrossRef
7.
Zurück zum Zitat Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280CrossRef Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280CrossRef
8.
Zurück zum Zitat Yang D, Liu Z, Ren X, Zhuang P (2016) Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti-6Al-4V. Int J Mech Sci 108:29–38CrossRef Yang D, Liu Z, Ren X, Zhuang P (2016) Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti-6Al-4V. Int J Mech Sci 108:29–38CrossRef
9.
Zurück zum Zitat Masmiati N, Sarhan A, Hassan M, Hmadi M (2016) Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Meas 86:253–265CrossRef Masmiati N, Sarhan A, Hassan M, Hmadi M (2016) Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Meas 86:253–265CrossRef
10.
Zurück zum Zitat Schajer G, Ruud C (2013) Overview of residual stresses and their measurement. In: Practical residual stress measurement methods. John Wiley & Sons, Hoboken, pp 1–27CrossRef Schajer G, Ruud C (2013) Overview of residual stresses and their measurement. In: Practical residual stress measurement methods. John Wiley & Sons, Hoboken, pp 1–27CrossRef
11.
Zurück zum Zitat Liu C, Barash M (1982) Variables governing patterns of mechanical residual stress in a machined surface. J Eng Ind 104(3):257–264CrossRef Liu C, Barash M (1982) Variables governing patterns of mechanical residual stress in a machined surface. J Eng Ind 104(3):257–264CrossRef
12.
Zurück zum Zitat Liang S, Su J (2007) Residual stress modeling in orthogonal machining. CIRP Ann 56(1):65–68CrossRef Liang S, Su J (2007) Residual stress modeling in orthogonal machining. CIRP Ann 56(1):65–68CrossRef
13.
Zurück zum Zitat Lazoglu I, Ulutan D, Alaca B, Engin S, Kaftanoglu B (2008) An enhanced analytical model for residual stress prediction in machining. CIRP Ann 57(1):81–84CrossRef Lazoglu I, Ulutan D, Alaca B, Engin S, Kaftanoglu B (2008) An enhanced analytical model for residual stress prediction in machining. CIRP Ann 57(1):81–84CrossRef
14.
Zurück zum Zitat Ulutan D, Alaca B, Lazoglu I (2007) Analytical modelling of residual stresses in machining. J Mater Process Technol 183(1):77–87CrossRef Ulutan D, Alaca B, Lazoglu I (2007) Analytical modelling of residual stresses in machining. J Mater Process Technol 183(1):77–87CrossRef
15.
Zurück zum Zitat Agrawal S, Joshi S (2013) Analytical modelling of residual stresses in orthogonal machining of AISI4340 steel. J Mater Process 15(1):167–179 Agrawal S, Joshi S (2013) Analytical modelling of residual stresses in orthogonal machining of AISI4340 steel. J Mater Process 15(1):167–179
16.
Zurück zum Zitat Merchant M (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J App Phys 16(5):267–275CrossRef Merchant M (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J App Phys 16(5):267–275CrossRef
17.
Zurück zum Zitat Lee E, Shaffer B (1951) The theory of plasticity applied to a problem of machining. J App Mech 18(4):405–413 Lee E, Shaffer B (1951) The theory of plasticity applied to a problem of machining. J App Mech 18(4):405–413
18.
Zurück zum Zitat Dewhurst P (1978) On the non-uniqueness of the machining process//. Proc R Soc Lond A: Math Phys Eng Sci R Soc 360(1703):587–610CrossRef Dewhurst P (1978) On the non-uniqueness of the machining process//. Proc R Soc Lond A: Math Phys Eng Sci R Soc 360(1703):587–610CrossRef
19.
Zurück zum Zitat Shi T, Ramalingam S (1993) Modeling chip formation with grooved tools. Int J Mech Sci 35(9):741–756CrossRef Shi T, Ramalingam S (1993) Modeling chip formation with grooved tools. Int J Mech Sci 35(9):741–756CrossRef
20.
Zurück zum Zitat Chao B, Trigger K (1953) The significance of the thermal number in metal machining. Trans ASME 75(1):109–115 Chao B, Trigger K (1953) The significance of the thermal number in metal machining. Trans ASME 75(1):109–115
21.
Zurück zum Zitat Loewen E, Shaw M (1954) On the analysis of cutting tool temperatures. Trans ASME 76(2):217–225 Loewen E, Shaw M (1954) On the analysis of cutting tool temperatures. Trans ASME 76(2):217–225
22.
Zurück zum Zitat Komanduri R, Hou Z (2000) Thermal modeling of the metal cutting process: part I-temperature rise distribution due to shear plane heat source. Int J Mech Sci 42(9):1715–1752CrossRefMATH Komanduri R, Hou Z (2000) Thermal modeling of the metal cutting process: part I-temperature rise distribution due to shear plane heat source. Int J Mech Sci 42(9):1715–1752CrossRefMATH
23.
Zurück zum Zitat Komanduri R, Hou Z (2001) Thermal modeling of the metal cutting process-part II: temperature rise distribution due to frictional heat source at the tool–chip interface. Int J Mech Sci 43(1):57–88CrossRefMATH Komanduri R, Hou Z (2001) Thermal modeling of the metal cutting process-part II: temperature rise distribution due to frictional heat source at the tool–chip interface. Int J Mech Sci 43(1):57–88CrossRefMATH
24.
Zurück zum Zitat Komanduri R, Hou Z (2001) Thermal modeling of the metal cutting process-part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source. Int J Mech Sci 43(1):89–107CrossRefMATH Komanduri R, Hou Z (2001) Thermal modeling of the metal cutting process-part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source. Int J Mech Sci 43(1):89–107CrossRefMATH
25.
Zurück zum Zitat Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann 63(2):631–653CrossRef Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann 63(2):631–653CrossRef
26.
Zurück zum Zitat Thiele JD, Shreyes N, Melkote RA (2000) Peascoe and Thomas R. Watkins. Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. J Manuf Sci Eng 122(4):642–649CrossRef Thiele JD, Shreyes N, Melkote RA (2000) Peascoe and Thomas R. Watkins. Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. J Manuf Sci Eng 122(4):642–649CrossRef
27.
Zurück zum Zitat Jang D, Watkins T, Kozaczek K, Hubbard C, Carin O (1996) Surface residual stresses in machined austenitic stainless steel. Wear 194:168–173CrossRef Jang D, Watkins T, Kozaczek K, Hubbard C, Carin O (1996) Surface residual stresses in machined austenitic stainless steel. Wear 194:168–173CrossRef
28.
Zurück zum Zitat Kim K, Lee W, Sin H (1999) A finite element analysis of machining with the tool edge considered. J Mater Process Technol 86:45–55CrossRef Kim K, Lee W, Sin H (1999) A finite element analysis of machining with the tool edge considered. J Mater Process Technol 86:45–55CrossRef
29.
Zurück zum Zitat Yen Y, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146:72–81CrossRef Yen Y, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146:72–81CrossRef
30.
Zurück zum Zitat Manjunathaiah J, Endres W (2000) A new model and analysis of orthogonal machining with an edge-radiused tool. J Manuf Sci Eng 122:384–390CrossRef Manjunathaiah J, Endres W (2000) A new model and analysis of orthogonal machining with an edge-radiused tool. J Manuf Sci Eng 122:384–390CrossRef
31.
Zurück zum Zitat Ozturk S, Altan E (2013) Position of the separation point in machining with a rounded-edge tool. Proc Inst Mech Eng Part B J Eng Manuf 227(7):965–971CrossRef Ozturk S, Altan E (2013) Position of the separation point in machining with a rounded-edge tool. Proc Inst Mech Eng Part B J Eng Manuf 227(7):965–971CrossRef
32.
Zurück zum Zitat Bissacco G, Hansen H, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann 57(1):113–116CrossRef Bissacco G, Hansen H, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann 57(1):113–116CrossRef
33.
Zurück zum Zitat Chen S, Su S, Jehng W (2014) Characterization of shear stresses in nickel-based superalloy Mar-M247 when orthogonal machining with coated carbide tools. J Cent South Univ 21(3):862–869CrossRef Chen S, Su S, Jehng W (2014) Characterization of shear stresses in nickel-based superalloy Mar-M247 when orthogonal machining with coated carbide tools. J Cent South Univ 21(3):862–869CrossRef
34.
Zurück zum Zitat Fischer A (2011) Contact mechanics. Springer, New York, pp 1–19 Fischer A (2011) Contact mechanics. Springer, New York, pp 1–19
35.
Zurück zum Zitat Basuray P, Misra B, Lal G (1977) Transition from ploughing to cutting during machining with blunt tools. Wear 43(3):341–349CrossRef Basuray P, Misra B, Lal G (1977) Transition from ploughing to cutting during machining with blunt tools. Wear 43(3):341–349CrossRef
36.
Zurück zum Zitat Jiang Y, Sehitoglu H (1994) An analytical approach to elastic-plastic stress analysis of rolling contact. J Tribol 116(3):577–587CrossRef Jiang Y, Sehitoglu H (1994) An analytical approach to elastic-plastic stress analysis of rolling contact. J Tribol 116(3):577–587CrossRef
37.
Zurück zum Zitat McDowell D (1997) An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211(2):237–246CrossRef McDowell D (1997) An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211(2):237–246CrossRef
38.
Zurück zum Zitat Johnson G, Holmquist T (1989) Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures. In: Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-11463-MS Johnson G, Holmquist T (1989) Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures. In: Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-11463-MS
39.
Zurück zum Zitat Tarek B, Guénaël G, Anne M, Benoit F (2015) Influence of high-pressure coolant assistance on the machinability of the titanium alloy\r, Ti555-3. Mach Sci Technol 19(1):134–151CrossRef Tarek B, Guénaël G, Anne M, Benoit F (2015) Influence of high-pressure coolant assistance on the machinability of the titanium alloy\r, Ti555-3. Mach Sci Technol 19(1):134–151CrossRef
40.
Zurück zum Zitat Wyen C, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Ann 59(1):93–96CrossRef Wyen C, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Ann 59(1):93–96CrossRef
41.
Zurück zum Zitat Okushima K, Kakino Y (1972) A study on the residual stress produced by metal cutting. Mem Fac Eng Kyoto Univ 34(2):234–248 Okushima K, Kakino Y (1972) A study on the residual stress produced by metal cutting. Mem Fac Eng Kyoto Univ 34(2):234–248
Metadaten
Titel
Analytical modeling of residual stress in orthogonal cutting considering tool edge radius effect
verfasst von
Dong Yang
Xiao Xiao
Xiaoliang Liang
Publikationsdatum
30.04.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03744-9

Weitere Artikel der Ausgabe 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.