Skip to main content
Erschienen in: Experimental Mechanics 8/2014

01.10.2014

Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete

verfasst von: W. F. Heard, B. E. Martin, X. Nie, T. Slawson, P. K. Basu

Erschienen in: Experimental Mechanics | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this study is to design a novel annular pulse shaping technique for large-diameter Kolsky bars for investigating the dynamic compressive response of concretes. The purpose of implementing an annular pulse shaper design is to alleviate inertia-induced stresses in the pulse shaper material that would otherwise superpose unwanted oscillations on the incident wave. This newly developed pulse shaping technique led to well-controlled testing conditions enabling dynamic stress equilibrium, uniform deformation, and constant strain-rate in the testing of a chosen concrete material. The observed dynamic deformation rate of the concrete is highly consistent (8 % variation) with the stress in the specimen well equilibrated confirming the validity of this new technique. Experimental results at both quasi-static (10−4 s−1) and dynamic (100 s−1, 240 s−1) strain rates showed that the failure strength of this concrete is rate-sensitive.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Albertini C, Cadoni E, Labibes K (1999) Study of the mechanical properties of plain concrete under dynamic loading. Exp Mech 39:137–141CrossRef Albertini C, Cadoni E, Labibes K (1999) Study of the mechanical properties of plain concrete under dynamic loading. Exp Mech 39:137–141CrossRef
2.
Zurück zum Zitat ASTM-C150 (2011) Standard specification for Portland cement. ASTM International, West Conshohocken ASTM-C150 (2011) Standard specification for Portland cement. ASTM International, West Conshohocken
3.
Zurück zum Zitat ASTM-C989 (2007) Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken ASTM-C989 (2007) Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken
4.
Zurück zum Zitat ASTM-C989 (2012) Standard specification for coal Fly Ash and Raw or calcined natural pozzolan for Use in concrete. ASTM International, West Conshohocken ASTM-C989 (2012) Standard specification for coal Fly Ash and Raw or calcined natural pozzolan for Use in concrete. ASTM International, West Conshohocken
5.
Zurück zum Zitat ASTM-C989 (2012) Standard specification for slag cement for use in concrete and mortars. ASTM International, West Conshohocken ASTM-C989 (2012) Standard specification for slag cement for use in concrete and mortars. ASTM International, West Conshohocken
6.
Zurück zum Zitat Bischoff P, Perry S (1991) Compressive behavior of concrete at high strain rates. Mater Struct 24:425–450CrossRef Bischoff P, Perry S (1991) Compressive behavior of concrete at high strain rates. Mater Struct 24:425–450CrossRef
7.
Zurück zum Zitat Bischoff P, Perry S (1995) Impact behavior of plain concrete loaded in uniaxial compression. J Eng Mech 121:685–693CrossRef Bischoff P, Perry S (1995) Impact behavior of plain concrete loaded in uniaxial compression. J Eng Mech 121:685–693CrossRef
8.
Zurück zum Zitat Brace WF, Jones AH (1971) Comparison of uniaxial deformation in shock and static loading of three rocks. J Geophys Res 76:4913–4921CrossRef Brace WF, Jones AH (1971) Comparison of uniaxial deformation in shock and static loading of three rocks. J Geophys Res 76:4913–4921CrossRef
9.
Zurück zum Zitat Brara A, Klepaczko JR (2006) Experimental characterization of concrete in dynamic tension. Mech Mater 38:253–267CrossRef Brara A, Klepaczko JR (2006) Experimental characterization of concrete in dynamic tension. Mech Mater 38:253–267CrossRef
10.
Zurück zum Zitat Cadoni E, Solomos G, Albertini C (2009) Mechanical characterization of concrete in tension and compression at high strain rate using a modified hopkinson bar. Mag Concr Res 61:221–230CrossRef Cadoni E, Solomos G, Albertini C (2009) Mechanical characterization of concrete in tension and compression at high strain rate using a modified hopkinson bar. Mag Concr Res 61:221–230CrossRef
11.
Zurück zum Zitat Chen W, Lou H (2003) Dynamic compressive testing of intact and damaged ceramics. Ceram Eng Sci Proc 24:411–416CrossRef Chen W, Lou H (2003) Dynamic compressive testing of intact and damaged ceramics. Ceram Eng Sci Proc 24:411–416CrossRef
12.
Zurück zum Zitat Chen W, Lou H (2004) Dynamic compressive responses of intact and damaged ceramics from a single split hopkinson pressure bar experiment. Exp Mech 44:295–299CrossRef Chen W, Lou H (2004) Dynamic compressive responses of intact and damaged ceramics from a single split hopkinson pressure bar experiment. Exp Mech 44:295–299CrossRef
13.
Zurück zum Zitat Christensen RJ, Swanson SR, Brown WS (1972) Split-hopkinson-bar tests on rock under confining pressure. Exp Mech 12(11):508–513CrossRef Christensen RJ, Swanson SR, Brown WS (1972) Split-hopkinson-bar tests on rock under confining pressure. Exp Mech 12(11):508–513CrossRef
14.
Zurück zum Zitat Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split hopkinson pressure bar. Journal of Mechanics and Physics of Solids 11:155–179CrossRef Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split hopkinson pressure bar. Journal of Mechanics and Physics of Solids 11:155–179CrossRef
15.
Zurück zum Zitat Dharan CKH, Hauser FE (1970) Determination of stress–strain characteristics at very high strain rates. Exp Mech 10:370–376CrossRef Dharan CKH, Hauser FE (1970) Determination of stress–strain characteristics at very high strain rates. Exp Mech 10:370–376CrossRef
16.
Zurück zum Zitat Donze F, Magnier S, Daudeville L, Mariotti C, Davenne L (1999) Numerical study of compressive behavior of concrete at high strain rates. J Eng Mech 125:1154–1163CrossRef Donze F, Magnier S, Daudeville L, Mariotti C, Davenne L (1999) Numerical study of compressive behavior of concrete at high strain rates. J Eng Mech 125:1154–1163CrossRef
17.
Zurück zum Zitat Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split hopkinson bar to study rate effects in 1100–0 aluminum. ASME Trans J Appl Mech 37:83–91CrossRef Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split hopkinson bar to study rate effects in 1100–0 aluminum. ASME Trans J Appl Mech 37:83–91CrossRef
18.
Zurück zum Zitat Ellwood S, Griffiths LJ, Parry DJ (1982) Materials testing at high constant strain tates. J Phys E Sci Instrum 15(3):280–282CrossRef Ellwood S, Griffiths LJ, Parry DJ (1982) Materials testing at high constant strain tates. J Phys E Sci Instrum 15(3):280–282CrossRef
19.
Zurück zum Zitat Erzar B, Forquin P (2010) An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech 50:941–955CrossRef Erzar B, Forquin P (2010) An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech 50:941–955CrossRef
20.
Zurück zum Zitat Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering 30:725–775CrossRef Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering 30:725–775CrossRef
21.
Zurück zum Zitat Forrestal MJ, Wright TW, Chen W (2007) The effect of radial inertia on brittle samples during the split hopkinson pressure bar test. International Journal of Impact Engineering 34:405–411CrossRef Forrestal MJ, Wright TW, Chen W (2007) The effect of radial inertia on brittle samples during the split hopkinson pressure bar test. International Journal of Impact Engineering 34:405–411CrossRef
22.
Zurück zum Zitat Frantz C, Follansbee P, Wright W (1984) Experimental techniques with the split hopkinson pressure bar. In: Proceedings of the 8th International Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division, ASME, Texas, TX Frantz C, Follansbee P, Wright W (1984) Experimental techniques with the split hopkinson pressure bar. In: Proceedings of the 8th International Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division, ASME, Texas, TX
23.
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2001) A split hopkinson bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41:40–46CrossRef Frew DJ, Forrestal MJ, Chen W (2001) A split hopkinson bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41:40–46CrossRef
24.
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef
25.
Zurück zum Zitat Gorham D (1989) Specimen inertia in high strain-rate compression. J Phys D Appl Phys 22:1888–1893CrossRef Gorham D (1989) Specimen inertia in high strain-rate compression. J Phys D Appl Phys 22:1888–1893CrossRef
26.
Zurück zum Zitat Gray GT (2000) Classical split-hopkinson pressure bar testing. In: Handbook ASM (ed) Mechanical testing and evaluation, vol 8. American Society for Metals, Materials Park, pp 462–476 Gray GT (2000) Classical split-hopkinson pressure bar testing. In: Handbook ASM (ed) Mechanical testing and evaluation, vol 8. American Society for Metals, Materials Park, pp 462–476
27.
Zurück zum Zitat Grote DL, Park SW, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. International Journal of Impact Engineering 25:869–886CrossRef Grote DL, Park SW, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. International Journal of Impact Engineering 25:869–886CrossRef
28.
Zurück zum Zitat Jiao T, Li Y, Ramesh K, Wereszczak A (2004) High rate response and dynamic failure of structural ceramics. International Journal of Applied Ceramics Technology 1:243–253CrossRef Jiao T, Li Y, Ramesh K, Wereszczak A (2004) High rate response and dynamic failure of structural ceramics. International Journal of Applied Ceramics Technology 1:243–253CrossRef
29.
Zurück zum Zitat Kim D, Sirijaroonchai K, El-Tawil S, Naaman A (2010) Numerical simulation of the split hopkinson pressure bar test technique for concrete under compression. International Journal of Impact Engineering 37:141–149CrossRef Kim D, Sirijaroonchai K, El-Tawil S, Naaman A (2010) Numerical simulation of the split hopkinson pressure bar test technique for concrete under compression. International Journal of Impact Engineering 37:141–149CrossRef
30.
Zurück zum Zitat Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc R Soc London B62:676–700 Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc R Soc London B62:676–700
31.
Zurück zum Zitat Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. International Journal of Impact Engineering 24:985–998CrossRef Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. International Journal of Impact Engineering 24:985–998CrossRef
32.
Zurück zum Zitat Li Q, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split hopkinson pressure bar test. Int J Solids Struct 40:343–360CrossRef Li Q, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split hopkinson pressure bar test. Int J Solids Struct 40:343–360CrossRef
33.
Zurück zum Zitat Malvern LE, Jenkens DA, Tianxi T, Ross CA (1985) Dynamic compressive testing of concrete. In: 2nd Symposium on The Interaction of Non-Nuclear Munitions with Structures, Engineering and Services Laboratory - Tyndall AFB, Panama City Beach, FL, pp 194–199 Malvern LE, Jenkens DA, Tianxi T, Ross CA (1985) Dynamic compressive testing of concrete. In: 2nd Symposium on The Interaction of Non-Nuclear Munitions with Structures, Engineering and Services Laboratory - Tyndall AFB, Panama City Beach, FL, pp 194–199
34.
Zurück zum Zitat Nemat-Nasser S, Deng H (1994) Strain-rate effect on brittle failure in compression. Acta Metallurgica Materialia 42:1013–1024CrossRef Nemat-Nasser S, Deng H (1994) Strain-rate effect on brittle failure in compression. Acta Metallurgica Materialia 42:1013–1024CrossRef
35.
Zurück zum Zitat Nemat-Nasser S, Isaacs JB, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. Proc R Soc London A435(1894):371–391CrossRef Nemat-Nasser S, Isaacs JB, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. Proc R Soc London A435(1894):371–391CrossRef
36.
Zurück zum Zitat Nie X, Chen W, Sun X, Templeton D (2007) Dynamic failure of borosilicate glass under compression/shear loading: Experiments. J Am Ceram Soc 90:2556–2562CrossRef Nie X, Chen W, Sun X, Templeton D (2007) Dynamic failure of borosilicate glass under compression/shear loading: Experiments. J Am Ceram Soc 90:2556–2562CrossRef
37.
Zurück zum Zitat Nie X, Sanborn B, Weerasooriya T, Chen W (2012) Inertia effects in high-rate compression experiments of soft materials. Proceedings of the Society for Experimental Mechanics, Lombard, pp 123–124 Nie X, Sanborn B, Weerasooriya T, Chen W (2012) Inertia effects in high-rate compression experiments of soft materials. Proceedings of the Society for Experimental Mechanics, Lombard, pp 123–124
38.
Zurück zum Zitat Paliwal B, Ramesh K, McCauley J (2006) Direct observation of the dynamic compressive failure of a transparent polycrystalline ceramic (alon). J Am Ceram Soc 89:2128–2133 Paliwal B, Ramesh K, McCauley J (2006) Direct observation of the dynamic compressive failure of a transparent polycrystalline ceramic (alon). J Am Ceram Soc 89:2128–2133
39.
Zurück zum Zitat Pan Y, Chen W, Song B (2005) The upper limit of constant strain rate in a split hopkinson pressure bar experiment. Exp Mech 45:440–446CrossRef Pan Y, Chen W, Song B (2005) The upper limit of constant strain rate in a split hopkinson pressure bar experiment. Exp Mech 45:440–446CrossRef
40.
Zurück zum Zitat Parry DJ, Walker AG, Dixon PR (1995) Hopkinson bar pulse smoothing. Meas Sci Technol 6:443–446CrossRef Parry DJ, Walker AG, Dixon PR (1995) Hopkinson bar pulse smoothing. Meas Sci Technol 6:443–446CrossRef
41.
Zurück zum Zitat Ross CA, Thompson PY, Tedesco JW (1989) Split-hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86(5):475–481 Ross CA, Thompson PY, Tedesco JW (1989) Split-hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86(5):475–481
42.
Zurück zum Zitat Ross CA, Tedesco JW, Kuennen ST (1995) Effects of strain rate on concrete strength. ACI Mater J 92(1):37–47 Ross CA, Tedesco JW, Kuennen ST (1995) Effects of strain rate on concrete strength. ACI Mater J 92(1):37–47
43.
Zurück zum Zitat Ross CA, Jerome DM, Tedesco JW, Hughes ML (1996) Moisture and strain rate effects on concrete strength. ACI Mater J 93(3):293–300 Ross CA, Jerome DM, Tedesco JW, Hughes ML (1996) Moisture and strain rate effects on concrete strength. ACI Mater J 93(3):293–300
44.
Zurück zum Zitat Samanta S (1971) Dynamic deformation of aluminum and copper at elevated temperatures. Journal of Mechanics and Physics of Solids 19:117–135CrossRef Samanta S (1971) Dynamic deformation of aluminum and copper at elevated temperatures. Journal of Mechanics and Physics of Solids 19:117–135CrossRef
45.
Zurück zum Zitat Song B, Chen W, Weerasooriya T (2003) Quasi-static and dynamic compressive behavior of a s-2 glass/sc15 composite. Journal of Compositie Materials 37:1723–1743CrossRef Song B, Chen W, Weerasooriya T (2003) Quasi-static and dynamic compressive behavior of a s-2 glass/sc15 composite. Journal of Compositie Materials 37:1723–1743CrossRef
46.
Zurück zum Zitat Song B, Chen W, Ge Y, Weerasooriya T (2007) Dynamic and quasi-static compressive response of porcine muscle. J Biomech 40:2999–3005CrossRef Song B, Chen W, Ge Y, Weerasooriya T (2007) Dynamic and quasi-static compressive response of porcine muscle. J Biomech 40:2999–3005CrossRef
47.
Zurück zum Zitat Song B, Ge Y, Chen W, Weerasooriya T (2007) Radial inertial effects in kolsky bar testing of extra-soft specimen. Exp Mech 47:659–670CrossRef Song B, Ge Y, Chen W, Weerasooriya T (2007) Radial inertial effects in kolsky bar testing of extra-soft specimen. Exp Mech 47:659–670CrossRef
48.
Zurück zum Zitat Tedesco JW, Ross CA, Kuennen ST (1993) Experimental and numerical analysis of high-strain rate splitting-tensile tests. ACI Mater J 90:162–169 Tedesco JW, Ross CA, Kuennen ST (1993) Experimental and numerical analysis of high-strain rate splitting-tensile tests. ACI Mater J 90:162–169
49.
Zurück zum Zitat Warren TL, Forrestal MJ (2010) Comments on the effect of radial inertia in the kolsky bar for an incompressible material. Exp Mech 50:1253–1255CrossRef Warren TL, Forrestal MJ (2010) Comments on the effect of radial inertia in the kolsky bar for an incompressible material. Exp Mech 50:1253–1255CrossRef
50.
Metadaten
Titel
Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete
verfasst von
W. F. Heard
B. E. Martin
X. Nie
T. Slawson
P. K. Basu
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 8/2014
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-014-9899-6

Weitere Artikel der Ausgabe 8/2014

Experimental Mechanics 8/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.