Skip to main content
Erschienen in: Polymer Bulletin 11/2021

23.10.2020 | Original Paper

Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings

verfasst von: Oylum Colpankan Gunes, Aylin Ziylan Albayrak

Erschienen in: Polymer Bulletin | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of the study was to produce modified cotton hydrogel composite wound dressings by antibacterial nisin incorporation and biocompatible carboxymethyl chitosan (CMCht):alginate impregnation. To the best of our knowledge, this is the first study where an antibacterial polypeptide nisin containing hydrogel wound dressing was obtained for wound healing application. The produced hydrogel composite wound dressings retained their porous structures after polymer modification as well as they had an appropriate water vapor transmission rate. Furthermore, because of their hydrogel structures they had a high water up-take capacity and exhibited viscoelastic properties. They also had an antibacterial activity against gram-positive Staphylococcus aureus bacteria and no cytotoxicity on fibroblast cell. Texture profile analysis was used to obtain the mechanical properties of wound dressing for the first time and it was observed that wound dressings had a high compressive strength. Consequently, the produced hydrogel composite wound dressings would be suitable as a short-term dressing material for acute wounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923PubMedCrossRef Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923PubMedCrossRef
2.
Zurück zum Zitat Mohandas A, Deepthi S, Biswas R, Jayakumar R (2017) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater 3:267–277PubMedPubMedCentralCrossRef Mohandas A, Deepthi S, Biswas R, Jayakumar R (2017) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater 3:267–277PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23 Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23
4.
Zurück zum Zitat Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7:1–21PubMedPubMedCentralCrossRef Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7:1–21PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Naseri-Nosar M, Ziora ZM (2018) Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohyd Polym 189:379–398CrossRef Naseri-Nosar M, Ziora ZM (2018) Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohyd Polym 189:379–398CrossRef
6.
Zurück zum Zitat Koehler J, Brandl FP, Goepferich AM (2018) Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 100:1–11CrossRef Koehler J, Brandl FP, Goepferich AM (2018) Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 100:1–11CrossRef
7.
Zurück zum Zitat Pinho E, Soares G (2018) Functionalization of cotton cellulose for improved wound healing. J Mater Chem B 6(13):1887–1898PubMedCrossRef Pinho E, Soares G (2018) Functionalization of cotton cellulose for improved wound healing. J Mater Chem B 6(13):1887–1898PubMedCrossRef
8.
Zurück zum Zitat Afroz S, Afrose F, Alam A, Khan RA, Alam MA (2019) Synthesis and characterization of polyethylene oxide (PEO)—N, N-dimethylacrylamide (DMA) hydrogel by gamma radiation. Adv Compos Hybrid Mater 2(1):133–141CrossRef Afroz S, Afrose F, Alam A, Khan RA, Alam MA (2019) Synthesis and characterization of polyethylene oxide (PEO)—N, N-dimethylacrylamide (DMA) hydrogel by gamma radiation. Adv Compos Hybrid Mater 2(1):133–141CrossRef
9.
Zurück zum Zitat Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233PubMedPubMedCentralCrossRef Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141PubMedCrossRef Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141PubMedCrossRef
11.
Zurück zum Zitat Gonçalves RC, da Silva DP, Signini R, Naves PLF (2017) Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. Int J Biol Macromol 105:385–392PubMedCrossRef Gonçalves RC, da Silva DP, Signini R, Naves PLF (2017) Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. Int J Biol Macromol 105:385–392PubMedCrossRef
12.
Zurück zum Zitat Pranoto Y, Rakshit S, Salokhe V (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Sci Technol 38(8):859–865CrossRef Pranoto Y, Rakshit S, Salokhe V (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Sci Technol 38(8):859–865CrossRef
13.
Zurück zum Zitat Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71(1):52–65PubMedCrossRef Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71(1):52–65PubMedCrossRef
14.
Zurück zum Zitat Anjum S, Arora A, Alam M, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508(1–2):92–101PubMedCrossRef Anjum S, Arora A, Alam M, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508(1–2):92–101PubMedCrossRef
15.
Zurück zum Zitat Cardona AF, Wilson SE (2015) Skin and soft-tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis 61(suppl_2):S69–S78PubMedCrossRef Cardona AF, Wilson SE (2015) Skin and soft-tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis 61(suppl_2):S69–S78PubMedCrossRef
16.
Zurück zum Zitat Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X (2018) Antibacterial hydrogels. Adv Sci 5(5):1700527CrossRef Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X (2018) Antibacterial hydrogels. Adv Sci 5(5):1700527CrossRef
17.
Zurück zum Zitat Mangoni ML, McDermott AM, Zasloff M (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 25(3):167–173PubMedPubMedCentralCrossRef Mangoni ML, McDermott AM, Zasloff M (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 25(3):167–173PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Scannell AG, Hill C, Ross R, Marx S, Hartmeier W, Arendt EK (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol 60(2–3):241–249PubMedCrossRef Scannell AG, Hill C, Ross R, Marx S, Hartmeier W, Arendt EK (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol 60(2–3):241–249PubMedCrossRef
19.
Zurück zum Zitat Zohri M, Alavidjeh MS, Haririan I, Ardestani MS, Ebrahimi SES, Sani HT, Sadjadi SK (2010) A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics Antimicrob Proteins 2(4):258–266PubMedCrossRef Zohri M, Alavidjeh MS, Haririan I, Ardestani MS, Ebrahimi SES, Sani HT, Sadjadi SK (2010) A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics Antimicrob Proteins 2(4):258–266PubMedCrossRef
20.
Zurück zum Zitat Li B, Kennedy J, Peng J, Yie X, Xie B (2006) Preparation and performance evaluation of glucomannan–chitosan–nisin ternary antimicrobial blend film. Carbohyd Polym 65(4):488–494CrossRef Li B, Kennedy J, Peng J, Yie X, Xie B (2006) Preparation and performance evaluation of glucomannan–chitosan–nisin ternary antimicrobial blend film. Carbohyd Polym 65(4):488–494CrossRef
21.
Zurück zum Zitat Bower C, Parker J, Higgins A, Oest M, Wilson J, Valentine B, Bothwell M, McGuire J (2002) Protein antimicrobial barriers to bacterial adhesion: in vitro and in vivo evaluation of nisin-treated implantable materials. Colloids Surf B 25(1):81–90CrossRef Bower C, Parker J, Higgins A, Oest M, Wilson J, Valentine B, Bothwell M, McGuire J (2002) Protein antimicrobial barriers to bacterial adhesion: in vitro and in vivo evaluation of nisin-treated implantable materials. Colloids Surf B 25(1):81–90CrossRef
22.
Zurück zum Zitat Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohyd Polym 58(4):417–420CrossRef Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohyd Polym 58(4):417–420CrossRef
23.
Zurück zum Zitat Santiago Cintrón M, Montalvo J, Von Hoven T, Rodgers J, Hinchliffe D, Madison C, Thyssen G, Zeng L (2016) Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory. Fibers 4(4):27CrossRef Santiago Cintrón M, Montalvo J, Von Hoven T, Rodgers J, Hinchliffe D, Madison C, Thyssen G, Zeng L (2016) Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory. Fibers 4(4):27CrossRef
24.
Zurück zum Zitat Tissera ND, Wijesena RN, Rathnayake S, de Silva RM, de Silva KN (2018) Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties. Carbohyd Polym 186:35–44CrossRef Tissera ND, Wijesena RN, Rathnayake S, de Silva RM, de Silva KN (2018) Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties. Carbohyd Polym 186:35–44CrossRef
25.
Zurück zum Zitat da Silva TL, Vidart JMM, da Silva MGC, Gimenes ML, Vieira MGA (2017) Alginate and Sericin: environmental and pharmaceutical applications. In: Biological activities and application of marine polysaccharides InTech, Rijeka, pp 57–86 da Silva TL, Vidart JMM, da Silva MGC, Gimenes ML, Vieira MGA (2017) Alginate and Sericin: environmental and pharmaceutical applications. In: Biological activities and application of marine polysaccharides InTech, Rijeka, pp 57–86
26.
Zurück zum Zitat Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica 19(6):2023–2028CrossRef Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica 19(6):2023–2028CrossRef
27.
Zurück zum Zitat Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci IJBS 4(3):221PubMed Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci IJBS 4(3):221PubMed
28.
Zurück zum Zitat Chen C-Y, Ke C-J, Yen K-C, Hsieh H-C, Sun J-S, Lin F-H (2015) 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy. Theranostics 5(6):643PubMedPubMedCentralCrossRef Chen C-Y, Ke C-J, Yen K-C, Hsieh H-C, Sun J-S, Lin F-H (2015) 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy. Theranostics 5(6):643PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Kumar Singh Yadav H, Shivakumar H (2012) In vitro and in vivo evaluation of pH-sensitive hydrogels of carboxymethyl chitosan for intestinal delivery of theophylline. ISRN pharmaceutics 2012 Kumar Singh Yadav H, Shivakumar H (2012) In vitro and in vivo evaluation of pH-sensitive hydrogels of carboxymethyl chitosan for intestinal delivery of theophylline. ISRN pharmaceutics 2012
30.
Zurück zum Zitat Colomer M (2013) Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides. J Sol-Gel Sci Technol 67(1):135–144CrossRef Colomer M (2013) Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides. J Sol-Gel Sci Technol 67(1):135–144CrossRef
32.
Zurück zum Zitat Chiu C-T, Lee J-S, Chu C-S, Chang Y-P, Wang Y-J (2008) Development of two alginate-based wound dressings. J Mater Sci Mater Med 19(6):2503–2513PubMedCrossRef Chiu C-T, Lee J-S, Chu C-S, Chang Y-P, Wang Y-J (2008) Development of two alginate-based wound dressings. J Mater Sci Mater Med 19(6):2503–2513PubMedCrossRef
33.
Zurück zum Zitat Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136(27):47738CrossRef Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136(27):47738CrossRef
34.
Zurück zum Zitat Byju AG, Kulkarni A (2013) Mechanics of gelatin and elastin based hydrogels as tissue engineered constructs. In: ICF13 Byju AG, Kulkarni A (2013) Mechanics of gelatin and elastin based hydrogels as tissue engineered constructs. In: ICF13
35.
Zurück zum Zitat Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2014) Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control 36(1):1–7CrossRef Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2014) Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control 36(1):1–7CrossRef
36.
Zurück zum Zitat Tang Q, Pan D, Sun Y, Cao J, Guo Y (2017) Preparation, characterization and antimicrobial activity of sodium alginate nanobiocomposite films incorporated with Ε-Polylysine and cellulose nanocrystals. J Food Process Preserv 41(5):e13120CrossRef Tang Q, Pan D, Sun Y, Cao J, Guo Y (2017) Preparation, characterization and antimicrobial activity of sodium alginate nanobiocomposite films incorporated with Ε-Polylysine and cellulose nanocrystals. J Food Process Preserv 41(5):e13120CrossRef
37.
Zurück zum Zitat Wahid F, Yin J-J, Xue D-D, Xue H, Lu Y-S, Zhong C, Chu L-Q (2016) Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279PubMedCrossRef Wahid F, Yin J-J, Xue D-D, Xue H, Lu Y-S, Zhong C, Chu L-Q (2016) Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279PubMedCrossRef
38.
Zurück zum Zitat Mohamed NA, Abd El-Ghany NA (2017) Pyromellitimide benzoyl thiourea cross-linked carboxymethyl chitosan hydrogels as antimicrobial agents. Int J Polym Mater Polym Biomater 66(17):861–870CrossRef Mohamed NA, Abd El-Ghany NA (2017) Pyromellitimide benzoyl thiourea cross-linked carboxymethyl chitosan hydrogels as antimicrobial agents. Int J Polym Mater Polym Biomater 66(17):861–870CrossRef
39.
Zurück zum Zitat Jozala AF, de Lencastre Novaes LC, Junior AP (2015) Nisin. In: Concepts, compounds and the alternatives of antibacterials. IntechOpen Jozala AF, de Lencastre Novaes LC, Junior AP (2015) Nisin. In: Concepts, compounds and the alternatives of antibacterials. IntechOpen
40.
Zurück zum Zitat Vukomanović M, Žunič V, Kunej Š, Jančar B, Jeverica S, Suvorov D (2017) Nano-engineering the antimicrobial spectrum of lantibiotics: activity of nisin against gram negative bacteria. Sci Rep 7(1):4324PubMedPubMedCentralCrossRef Vukomanović M, Žunič V, Kunej Š, Jančar B, Jeverica S, Suvorov D (2017) Nano-engineering the antimicrobial spectrum of lantibiotics: activity of nisin against gram negative bacteria. Sci Rep 7(1):4324PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Niaz T, Shabbir S, Noor T, Abbasi R, Raza ZA, Imran M (2018) Polyelectrolyte multicomponent colloidosomes loaded with nisin Z for enhanced antimicrobial activity against foodborne resistant pathogens. Front Microbiol 8:2700PubMedPubMedCentralCrossRef Niaz T, Shabbir S, Noor T, Abbasi R, Raza ZA, Imran M (2018) Polyelectrolyte multicomponent colloidosomes loaded with nisin Z for enhanced antimicrobial activity against foodborne resistant pathogens. Front Microbiol 8:2700PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Zarzycki R, Modrzejewska Z, Nawrotek K (2010) Drug release from hydrogel matrices. Ecol Chem Eng S 17(2):117–136 Zarzycki R, Modrzejewska Z, Nawrotek K (2010) Drug release from hydrogel matrices. Ecol Chem Eng S 17(2):117–136
43.
Zurück zum Zitat Kim I, Yoo M, Seo J, Park S, Na H, Lee H, Kim S, Cho C (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341(1–2):35–43PubMedCrossRef Kim I, Yoo M, Seo J, Park S, Na H, Lee H, Kim S, Cho C (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341(1–2):35–43PubMedCrossRef
44.
Zurück zum Zitat Nada A-AM, Kamel S, El-Sakhawy M (2000) Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355CrossRef Nada A-AM, Kamel S, El-Sakhawy M (2000) Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355CrossRef
45.
Zurück zum Zitat Bu Y, Xu H-X, Li X, Xu W-J, Yin Y-x, Dai H-l, Wang X-b, Huang Z-J, Xu P-H (2018) A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Adv 8(20):10806–10817CrossRefPubMedPubMedCentral Bu Y, Xu H-X, Li X, Xu W-J, Yin Y-x, Dai H-l, Wang X-b, Huang Z-J, Xu P-H (2018) A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Adv 8(20):10806–10817CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Linh P, Chien N, Dung D, Nam P, Hoa D, Anh N, Hong L, Phuc N, Phong P (2018) Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe 3 O 4 nanoparticles: synthesis, characterization and magnetic heating efficiency. J Mater Sci 53(12):8887–8900CrossRef Linh P, Chien N, Dung D, Nam P, Hoa D, Anh N, Hong L, Phuc N, Phong P (2018) Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe 3 O 4 nanoparticles: synthesis, characterization and magnetic heating efficiency. J Mater Sci 53(12):8887–8900CrossRef
47.
Zurück zum Zitat Jones DS, Woolfson AD, Djokic J (1996) Texture profile analysis of bioadhesive polymeric semisolids: mechanical characterization and investigation of interactions between formulation components. J Appl Polym Sci 61(12):2229–2234CrossRef Jones DS, Woolfson AD, Djokic J (1996) Texture profile analysis of bioadhesive polymeric semisolids: mechanical characterization and investigation of interactions between formulation components. J Appl Polym Sci 61(12):2229–2234CrossRef
48.
Zurück zum Zitat Ferreira P, Calvinho P, Cabrita AS, Schacht E, Gil MH (2006) Synthesis and characterization of new methacrylate based hydrogels. Revista Brasileira de Ciências Farmacêuticas 42(3):419–427CrossRef Ferreira P, Calvinho P, Cabrita AS, Schacht E, Gil MH (2006) Synthesis and characterization of new methacrylate based hydrogels. Revista Brasileira de Ciências Farmacêuticas 42(3):419–427CrossRef
49.
Zurück zum Zitat Hurler J, Engesland A, Poorahmary Kermany B, Škalko-Basnet N (2012) Improved texture analysis for hydrogel characterization: gel cohesiveness, adhesiveness, and hardness. J Appl Polym Sci 125(1):180–188CrossRef Hurler J, Engesland A, Poorahmary Kermany B, Škalko-Basnet N (2012) Improved texture analysis for hydrogel characterization: gel cohesiveness, adhesiveness, and hardness. J Appl Polym Sci 125(1):180–188CrossRef
50.
Zurück zum Zitat Gunes OC, Albayrak AZ, Tasdemir S, Sendemir A (2020) Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair. J Biomater Appl. 0885328220930714 Gunes OC, Albayrak AZ, Tasdemir S, Sendemir A (2020) Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair. J Biomater Appl. 0885328220930714
51.
Zurück zum Zitat Archana D, Dutta J, Dutta P (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203PubMedCrossRef Archana D, Dutta J, Dutta P (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203PubMedCrossRef
52.
Zurück zum Zitat Unalan I, Colpankan O, Albayrak AZ, Gorgun C, Urkmez AS (2016) Biocompatibility of plasma-treated poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration. Mater Sci Eng C 68:842–850CrossRef Unalan I, Colpankan O, Albayrak AZ, Gorgun C, Urkmez AS (2016) Biocompatibility of plasma-treated poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration. Mater Sci Eng C 68:842–850CrossRef
Metadaten
Titel
Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings
verfasst von
Oylum Colpankan Gunes
Aylin Ziylan Albayrak
Publikationsdatum
23.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 11/2021
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03429-4

Weitere Artikel der Ausgabe 11/2021

Polymer Bulletin 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.