Skip to main content
Erschienen in: Neural Computing and Applications 11/2020

20.04.2019 | Original Article

Antlion optimization algorithm for pairwise structural alignment with bi-objective functions

verfasst von: R. Ranjani Rani, D. Ramyachitra

Erschienen in: Neural Computing and Applications | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research work concentrates on the pairwise protein structure alignment of numerous protein structures. This is considered to be a problematic job which is an NP-hard problem. This work proposed a bi-objective-based antlion optimization algorithm (BO-ALO) which is aimed to improve the geometrical and evolutionary relationship among the protein structures. The bi-objective functions are the RMSD and TM scores which aim to minimize the RMSD score and maximize the TM score. The BO-ALO method has been compared with various widespread existing methods such as SPalignNS, UniAlign, DALI, MICAN, GANGSTA, DeepAlign, TM-align, CE, ant colony optimization and artificial bee colony optimization methods. The experiments were taken from the benchmark datasets, namely SCOPe and CATH. Also, the predicted alignments were compared with gold standard benchmark databases such as CDD, MALIDUP, MALISAM and HOMSTRAD. The outcomes of the proposed method have better bi-objective function scores and performance measures than other well-known existing approaches. This work also evaluates the proposed method with its biological significance of predicting the common gene ontology functions among the aligned protein structures. Finally, the statistical significance of the BO-ALO is computed by employing the Wilcoxon matched-signed rank test. Also, the statistical significant results of the proposed methods give better results when compared to other existing approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Marti-Renom MA, Capriotti E, Shindyalov IN, Bourne PE (2009) Structure comparison and alignment. In: Jenny Gu, Bourne Philip E (eds) Structural bioinformatics, Second edn. Wiley, Hoboken Marti-Renom MA, Capriotti E, Shindyalov IN, Bourne PE (2009) Structure comparison and alignment. In: Jenny Gu, Bourne Philip E (eds) Structural bioinformatics, Second edn. Wiley, Hoboken
2.
Zurück zum Zitat Jung J, Lee B (2000) Protein structure alignment using environmental profiles. Protein Eng 13(8):535–543CrossRef Jung J, Lee B (2000) Protein structure alignment using environmental profiles. Protein Eng 13(8):535–543CrossRef
3.
Zurück zum Zitat Holm L, Kaariainen S, Rosenstrom P, Schenkel A (2008) Searching protein structure databases with DaliLite v.3. Bioinformatics 24(23):2780–2781CrossRef Holm L, Kaariainen S, Rosenstrom P, Schenkel A (2008) Searching protein structure databases with DaliLite v.3. Bioinformatics 24(23):2780–2781CrossRef
4.
Zurück zum Zitat Gibrat JF, Madeji T, Brynt SH (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 6:377–385CrossRef Gibrat JF, Madeji T, Brynt SH (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 6:377–385CrossRef
5.
Zurück zum Zitat Orengo CA, Taylor WR (1996) SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol 266:617–635CrossRef Orengo CA, Taylor WR (1996) SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol 266:617–635CrossRef
6.
Zurück zum Zitat Shindyalov IN, Bourne PE (2001) A database and tools for 3-D protein structure comparison and alignment using the combinatorial extension (CE) algorithm. Nucleic Acids Res 29(1):228–229CrossRef Shindyalov IN, Bourne PE (2001) A database and tools for 3-D protein structure comparison and alignment using the combinatorial extension (CE) algorithm. Nucleic Acids Res 29(1):228–229CrossRef
7.
Zurück zum Zitat Menke M, Berger B, Cowen L (2008) Matt: local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4(1):0088–0099MathSciNetCrossRef Menke M, Berger B, Cowen L (2008) Matt: local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4(1):0088–0099MathSciNetCrossRef
8.
Zurück zum Zitat Ye Y, Godzik A (2004) FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res 32:W582–W585CrossRef Ye Y, Godzik A (2004) FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res 32:W582–W585CrossRef
9.
Zurück zum Zitat Minami S, Sawada K, Chikenji G (2013) MICAN: a protein structure alignment algorithm that can handle multiple-chains, inverse alignments, Cα only models, alternative alignments, and non-sequential alignments. BMC Bioinform 14:24CrossRef Minami S, Sawada K, Chikenji G (2013) MICAN: a protein structure alignment algorithm that can handle multiple-chains, inverse alignments, Cα only models, alternative alignments, and non-sequential alignments. BMC Bioinform 14:24CrossRef
10.
Zurück zum Zitat Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309CrossRef Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309CrossRef
11.
Zurück zum Zitat Kolbeck B, May P, Schmidt-Goenner T, Steinke T, Knapp EW (2006) Connectivity independent protein-structure alignment: a hierarchical approach. BMC Bioinform 7:510CrossRef Kolbeck B, May P, Schmidt-Goenner T, Steinke T, Knapp EW (2006) Connectivity independent protein-structure alignment: a hierarchical approach. BMC Bioinform 7:510CrossRef
12.
Zurück zum Zitat Zhao C, Sacan A (2015) UniAlign: protein structure alignment meets evolution. Bioinformatics 31(19):3139–3146CrossRef Zhao C, Sacan A (2015) UniAlign: protein structure alignment meets evolution. Bioinformatics 31(19):3139–3146CrossRef
13.
Zurück zum Zitat Brown P, Pullan W, Yang Y, Zhou Y (2016) Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic. Bioinformatics 32(3):370–377CrossRef Brown P, Pullan W, Yang Y, Zhou Y (2016) Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic. Bioinformatics 32(3):370–377CrossRef
14.
Zurück zum Zitat Wang S, Ma J, Peng J, Xu J (2013) Protein structure alignment beyond spatial proximity. Sci Rep 3:1448CrossRef Wang S, Ma J, Peng J, Xu J (2013) Protein structure alignment beyond spatial proximity. Sci Rep 3:1448CrossRef
15.
Zurück zum Zitat Hirpa D, Hare W, Lucet Y, Pushak Y, Tesfamariam S (2016) A bi-objective optimization framework for three-dimensional road alignment design. Transp Res Part C 65:61–78CrossRef Hirpa D, Hare W, Lucet Y, Pushak Y, Tesfamariam S (2016) A bi-objective optimization framework for three-dimensional road alignment design. Transp Res Part C 65:61–78CrossRef
16.
Zurück zum Zitat Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Protein Struct Funct Bioinform 57:702–710CrossRef Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Protein Struct Funct Bioinform 57:702–710CrossRef
17.
Zurück zum Zitat Rani RR, Ramyachitra D (2016) Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm. Biosystems 150:177–189CrossRef Rani RR, Ramyachitra D (2016) Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm. Biosystems 150:177–189CrossRef
18.
19.
Zurück zum Zitat Tharwat A, Hassanien AE (2018) Chaotic antlion algorithm for parameter optimization of support vector machine. Appl Intell 48:670–686CrossRef Tharwat A, Hassanien AE (2018) Chaotic antlion algorithm for parameter optimization of support vector machine. Appl Intell 48:670–686CrossRef
20.
Zurück zum Zitat Mouassa S, Bouktir T, Saihi A (2017) Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng Sci Technol Int J 20:885–895 Mouassa S, Bouktir T, Saihi A (2017) Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng Sci Technol Int J 20:885–895
21.
Zurück zum Zitat Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PLoS ONE 11(3):e0150652CrossRef Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PLoS ONE 11(3):e0150652CrossRef
22.
Zurück zum Zitat Tian T, Liu C, Guo Q, Yuan Y, Li W, Yan Q (2018) An improved ant lion optimization algorithm and its application in hydraulic turbine governing system parameter identification. Energies 11:95CrossRef Tian T, Liu C, Guo Q, Yuan Y, Li W, Yan Q (2018) An improved ant lion optimization algorithm and its application in hydraulic turbine governing system parameter identification. Energies 11:95CrossRef
23.
Zurück zum Zitat Ali ES, Elazim SBA, Abdelaziz AY (2017) Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations. Renew Energy 101:1311–1324CrossRef Ali ES, Elazim SBA, Abdelaziz AY (2017) Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations. Renew Energy 101:1311–1324CrossRef
24.
Zurück zum Zitat Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540 Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540
25.
Zurück zum Zitat Conte LL, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res 28:257–259CrossRef Conte LL, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res 28:257–259CrossRef
26.
Zurück zum Zitat Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108CrossRef Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108CrossRef
27.
Zurück zum Zitat Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD et al (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196CrossRef Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD et al (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196CrossRef
28.
Zurück zum Zitat Cheng H, Kim BH, Grishin NV (2008) MALIDUP: a database of manually constructed structure alignments for duplicated domain pairs. Proteins 70(4):1162–1166CrossRef Cheng H, Kim BH, Grishin NV (2008) MALIDUP: a database of manually constructed structure alignments for duplicated domain pairs. Proteins 70(4):1162–1166CrossRef
29.
Zurück zum Zitat Cheng H, Kim BH, Grishin NV (2008) MALISAM: a database of structurally analogous motifs in proteins. Nucleic Acids Res 36:D211–D217CrossRef Cheng H, Kim BH, Grishin NV (2008) MALISAM: a database of structurally analogous motifs in proteins. Nucleic Acids Res 36:D211–D217CrossRef
30.
Zurück zum Zitat Mizuguchi K, Deane CM, Blundell TL, Overington JP (1998) HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci 7(11):2469–2471CrossRef Mizuguchi K, Deane CM, Blundell TL, Overington JP (1998) HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci 7(11):2469–2471CrossRef
Metadaten
Titel
Antlion optimization algorithm for pairwise structural alignment with bi-objective functions
verfasst von
R. Ranjani Rani
D. Ramyachitra
Publikationsdatum
20.04.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04176-y

Weitere Artikel der Ausgabe 11/2020

Neural Computing and Applications 11/2020 Zur Ausgabe

S.I. : Brain inspired Computing&Machine Learning Applied Research-BISMLARE

An advanced active set L-BFGS algorithm for training weight-constrained neural networks

Premium Partner