Skip to main content

2022 | OriginalPaper | Buchkapitel

Application of Autoencoders for Feature Extraction in BCI-SSVEP

verfasst von : R. Granzotti, G. V. Vargas, L. Boccato

Erschienen in: XXVII Brazilian Congress on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A brain-computer interface (BCI) based on the steady-state visually evoked potentials (SSVEP) paradigm deals with the challenge of determining the frequency associated with the visual stimulus the user is concentrated on, given electroencephalography (EEG) recordings of the brain activity. For this, the BCI process the brain signals in order to remove artifacts and, more importantly, to extract relevant features that contribute to the classification. A technique known as autoencoder (AE) has gained special attention in the last decades due to its ability to discover advantageous representations for a dataset, even with a significant dimensionality reduction. Essentially, autoencoders (AEs) are neural networks composed of two parts—encoder and decoder—whose roles are, respectively, to create the internal representation (named code) for the input data, and to reconstruct the input data from the generated code. Thus, the encoder corresponds to a powerful nonlinear feature extractor. In this work, we investigated the use of AEs to perform the feature extraction in a BCI-SSVEP. Different AE approaches have been analyzed, both in time and frequency domains, considering two classifiers: logistic regression and support-vector machines. The obtained results reveal that AEs can offer a performance improvement when compared with a BCI using the discrete-time Fourier transform (DFT) features.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Graimann B, Allison B, Pfurtscheller G (2009) Brain–computer interfaces: a gentle introduction. In: Brain-computer interfaces. Springer, pp 1–27 Graimann B, Allison B, Pfurtscheller G (2009) Brain–computer interfaces: a gentle introduction. In: Brain-computer interfaces. Springer, pp 1–27
2.
Zurück zum Zitat Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279CrossRef Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279CrossRef
3.
Zurück zum Zitat Lin Z, Zhang C, Wu W, Gao X (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 53:2610–2614CrossRef Lin Z, Zhang C, Wu W, Gao X (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 53:2610–2614CrossRef
4.
Zurück zum Zitat Nakanishi M, Wang Y, Wang Y-T, Jung T-P (2015) A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLOS ONE 10:1–18 Nakanishi M, Wang Y, Wang Y-T, Jung T-P (2015) A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLOS ONE 10:1–18
5.
Zurück zum Zitat Carvalho SN, Costa TBS, Uribe LFS et al (2015) Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed Signal Process Control 21:34–42CrossRef Carvalho SN, Costa TBS, Uribe LFS et al (2015) Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed Signal Process Control 21:34–42CrossRef
6.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MAMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MAMATH
7.
Zurück zum Zitat Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras & TensorFlow, 2nd edn. O’Reilly Media Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras & TensorFlow, 2nd edn. O’Reilly Media
8.
Zurück zum Zitat Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang Y (2019) A survey on deep learning based brain computer interface: recent advances and new frontiers. arXiv:1905.04149 [cs.HC] Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang Y (2019) A survey on deep learning based brain computer interface: recent advances and new frontiers. arXiv:​1905.​04149 [cs.HC]
9.
Zurück zum Zitat Pérez-Benítez JL, Pérez-Benítez JA, Espina-Hernández JH (2018) Development of a brain computer interface using multi-frequency visual stimulation and deep neural networks. In: 2018 international conference on electronics, communications and computers (CONIELECOMP), pp 18–24 Pérez-Benítez JL, Pérez-Benítez JA, Espina-Hernández JH (2018) Development of a brain computer interface using multi-frequency visual stimulation and deep neural networks. In: 2018 international conference on electronics, communications and computers (CONIELECOMP), pp 18–24
10.
Zurück zum Zitat Chuang CC, Lee CC, Yeng CH, So EC, Lin BS, Chen YJ (2019) Convolutional denoising autoencoder based SSVEP signal enhancement to SSVEP-based BCIs. Microsyst Technol Chuang CC, Lee CC, Yeng CH, So EC, Lin BS, Chen YJ (2019) Convolutional denoising autoencoder based SSVEP signal enhancement to SSVEP-based BCIs. Microsyst Technol
11.
Zurück zum Zitat McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394CrossRef McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394CrossRef
12.
Zurück zum Zitat Oppenheim AV, Schafer RW (2009) Discrete-time signal processing, 3rd edn. Pearson Oppenheim AV, Schafer RW (2009) Discrete-time signal processing, 3rd edn. Pearson
13.
Zurück zum Zitat Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH
14.
Zurück zum Zitat Zhai S, Zhang Z (2015) Dropout training of matrix factorization and autoencoder for link prediction in sparse graphs. In: Proceedings of the 2015 SIAM international conference on data mining Zhai S, Zhang Z (2015) Dropout training of matrix factorization and autoencoder for link prediction in sparse graphs. In: Proceedings of the 2015 SIAM international conference on data mining
Metadaten
Titel
Application of Autoencoders for Feature Extraction in BCI-SSVEP
verfasst von
R. Granzotti
G. V. Vargas
L. Boccato
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70601-2_261

Neuer Inhalt