Skip to main content
Erschienen in: Thermal Engineering 8/2020

01.08.2020 | RENEWABLE ENERGY SOURCES AND HYDROPOWER

Application of Fuel-Cell-Based Power Installations at Thermal Power Plants

verfasst von: R. S. Tsgoev

Erschienen in: Thermal Engineering | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The feasibility of using fuel-cell-based power installations (FСBPI) in auxiliary power (AP) systems at thermal gas/oil or gas-fired power stations is discussed. In this case, two options can be implemented at once: replacement of some district water heaters at a thermal power plant (TPS) with heaters using the heat of reaction products in FСBPIs and parallel power generation by TPS with the Rankine cycle and FСBPI. A thermodynamic analysis has demonstrated an increase in the thermal efficiency of TPSs since an FСBPI complex increases power delivery to a power system. Calculations were performed for a 300-MW power unit at a condensing power station (CPS). In particular, the installed capacity of FСBPIs was considered assuming that its thermal output is equal to the thermal output of network water heaters. In this case, additional power generation by the TPS power unit proper amounts to 50 632.8 MW h. Gas is supplied to the CPS power unit and FСBPIs from the same system. It is demonstrated that construction of such a complex is feasible if the FСBPI efficiency is higher than the net efficiency of the CPS power unit. This also yields natural gas saving throughout a year. The payback of the proposal for the use of FСBPIs is based on an increase in the KPS power output due to an increase in the thermal efficiency and the fact the FСBPIs deliver additional power (minus the auxiliary power) to the power system. In addition, turbine steam extraction to network water heaters and the generator power take-off to cover auxiliary power needs are eliminated. Therefore, according to the simplified calculations, the payback period for 25 MW FСBPIs operating on natural gas as a part of a 300-MW gas-fired CPS is approximately 2 years. The maneuverability of the CPS increases considerably within the FCBPI’s installed capacity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
DOE—Department of Energy of the United States. According to the bill passed by the DOE and supporting the improvement in the energy efficiency, funding for energy saving programs assigned to the US Department of Energy is increasing.
 
Literatur
2.
Zurück zum Zitat S. I. Bredikhin, A. E. Golodnitskii, O. A. Drozhzhin, S. Ya. Istomin, V. P. Kovalevskii, and S. P. Filippov, Stationary Power Plants with Fuel Cells: Materials, Technologies, Markets (Energoprogress, Moscow, 2017) [in Russian]. S. I. Bredikhin, A. E. Golodnitskii, O. A. Drozhzhin, S. Ya. Istomin, V. P. Kovalevskii, and S. P. Filippov, Stationary Power Plants with Fuel Cells: Materials, Technologies, Markets (Energoprogress, Moscow, 2017) [in Russian].
3.
Zurück zum Zitat N. V. Korovin, Fuel Cells and Electrochemical Power Installations (Mosk. Energ. Inst., Moscow, 2005) [in Russian]. N. V. Korovin, Fuel Cells and Electrochemical Power Installations (Mosk. Energ. Inst., Moscow, 2005) [in Russian].
4.
Zurück zum Zitat J. Garche and L. Jörissen, “Applications of fuel cell technology: Status and perspectives,” The Electrochem. Soc. Interface 24 (2), 39–44 (2015). https://www.electrochem.org/dl/interface/sum/sum15/sum15_p39_43.pdf.CrossRef J. Garche and L. Jörissen, “Applications of fuel cell technology: Status and perspectives,” The Electrochem. Soc. Interface 24 (2), 39–44 (2015). https://​www.​electrochem.​org/​dl/​interface/​sum/​sum15/​sum15_​p39_​43.​pdf.​CrossRef
5.
Zurück zum Zitat Next-Generation Fuel Cell Power Generating System Initiatives. http://www.mhps.com/products/sofc/ technology/approach-practical/index.html. Next-Generation Fuel Cell Power Generating System Initiatives. http://​www.​mhps.​com/​products/​sofc/​ technology/approach-practical/index.html.
6.
Zurück zum Zitat “Demonstration testing started of SOFC-MGT hybrid power generation system, toward commercial launch for business and industrial uses, Yokohama, September 21, 2016” (2016). http://www.mhps.com/news/20160921. html. “Demonstration testing started of SOFC-MGT hybrid power generation system, toward commercial launch for business and industrial uses, Yokohama, September 21, 2016” (2016). http://​www.​mhps.​com/​news/​20160921.​ html.
7.
Zurück zum Zitat Y. Kobayashi, K. Tomida, M. Nishiura, K. Hiwatashi, H. Kishizawa, and K. Takenobu, “Development of next-generation large-scale SOFC toward realization of a hydrogen society,” Tech. Rev. - Mitsubishi Heavy Ind. 52, 111–116 (2015). Y. Kobayashi, K. Tomida, M. Nishiura, K. Hiwatashi, H. Kishizawa, and K. Takenobu, “Development of next-generation large-scale SOFC toward realization of a hydrogen society,” Tech. Rev. - Mitsubishi Heavy Ind. 52, 111–116 (2015).
8.
Zurück zum Zitat A. P. Baskakov, B. V. Berg, O. K. Vitt, Yu. V. Kuznetsov, and N. F. Filippovskii, Heat Engineering: Textbook, Ed. by A. P. Baskakov (Energoizdat, Moscow, 1982) [in Russian]. A. P. Baskakov, B. V. Berg, O. K. Vitt, Yu. V. Kuznetsov, and N. F. Filippovskii, Heat Engineering: Textbook, Ed. by A. P. Baskakov (Energoizdat, Moscow, 1982) [in Russian].
9.
Zurück zum Zitat V. Ya. Ryzhkin, Thermal Power Plants (Energiya, Moscow, 1976) [in Russian]. V. Ya. Ryzhkin, Thermal Power Plants (Energiya, Moscow, 1976) [in Russian].
10.
Zurück zum Zitat V. Ya. Girshfel’d and G. N. Morozov, Thermal Power Plants, 2nd ed. (Energoatomizdat, Moscow, 1986) [in Russian]. http://bookre.org/reader?file=487701&pg=90. V. Ya. Girshfel’d and G. N. Morozov, Thermal Power Plants, 2nd ed. (Energoatomizdat, Moscow, 1986) [in Russian]. http://​bookre.​org/​reader?​file=​487701&​pg=​90.​
11.
Zurück zum Zitat R. S. Tsgoev, “Auxiliary power supply device of a power plant’s power generating unit,” RF Patent No. 2671821, Byull. Izobret., No. 31 (2018). R. S. Tsgoev, “Auxiliary power supply device of a power plant’s power generating unit,” RF Patent No. 2671821, Byull. Izobret., No. 31 (2018).
12.
Zurück zum Zitat R. S. Tsgoev, “The method of operation of a thermal power plant and device for its implementation,” RF Patent No. 2687382, Byull. Izobret., No. 14 (2019). R. S. Tsgoev, “The method of operation of a thermal power plant and device for its implementation,” RF Patent No. 2687382, Byull. Izobret., No. 14 (2019).
13.
Zurück zum Zitat Handbook on the Design of Electrical Networks, Ed. by D. L. Faibisovich, 4th ed. (ENAS, Moscow, 2012), pp. 67–68. Handbook on the Design of Electrical Networks, Ed. by D. L. Faibisovich, 4th ed. (ENAS, Moscow, 2012), pp. 67–68.
14.
Zurück zum Zitat Medium-Scale CHP Fuel Cell System Targets, DOE Hydrogen and Fuel Cells Program Record No. 11014 (2012). Medium-Scale CHP Fuel Cell System Targets, DOE Hydrogen and Fuel Cells Program Record No. 11014 (2012).
Metadaten
Titel
Application of Fuel-Cell-Based Power Installations at Thermal Power Plants
verfasst von
R. S. Tsgoev
Publikationsdatum
01.08.2020
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 8/2020
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601520080066

Weitere Artikel der Ausgabe 8/2020

Thermal Engineering 8/2020 Zur Ausgabe

HEAT AND MASS TRANSFER, PROPERTIES OF WORKING FLUIDS AND MATERIALS

Investigation of Thermohydraulic Characteristics of Vortex Chambers

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Application of the Parametric Method for Profiling the Interblade Channels in the Nozzle Cascades of Axial-Flow Turbine Machines

    Premium Partner