Skip to main content
Erschienen in: Thermal Engineering 8/2020

01.08.2020 | HEAT AND MASS TRANSFER, PROPERTIES OF WORKING FLUIDS AND MATERIALS

Investigation of Thermohydraulic Characteristics of Vortex Chambers

verfasst von: A. V. Vikulin, N. L. Yaroslavtsev

Erschienen in: Thermal Engineering | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Local flow swirling is used in power facilities and other technical devices. It is an effective means for acting on the air flow structure and can enhance heat transfer. A swirled flow in axisymmetric channels belongs to the group of 3D flows in the field of centrifugal mass forces. It is characterized by the ratio of two (axial and rotational) or, in some cases, three components of the velocity, the presence of transverse and longitudinal pressure gradients, and high turbulent fluctuations that bring about certain difficulties in the investigation of processes occurring in a swirled flow and it complicates detection of their regularities. Therefore, it is proposed to install a vortex chamber (VC) at the leading edge of a blade or vane of a high-temperature gas turbine. Temperature conditions and flow capacity of VC models were studied by a calorimetric method in a liquid-metal thermostat. The regularities of heat transfer rate on the surface of the cooling channels were determined depending on the number and diameter of inlet (supply) and outlet holes for various pressure drops. The VK designs were optimized considering the effect of their geometry on the formation of various swirl flow structures with different levels of heat transfer enhancement. An analysis was performed with account taken of the throughput capacity of the models. The criterial dependences of the Nusselt number vs. Reynolds number Re were obtained for three VC designs for direct- or reverse-flow direction. The highest heat fluxes were observed on the section of coolant supply via holes, which is explained by a high velocity of the initial flow swirling. Flow swirl breakage and cooling air heating are the cause of a decrease in the relative heat transfer coefficient \({\bar {\alpha }}{\text{.}}\) The self-similarity mode is observed at a pressure ratio across the vortex chamber above 1.4. The thermal problem was solved using data of the hydraulic tests of the models with air blowing under isothermal conditions. The results of experimental studies can be included in the data bank of heat and mass transfer software products to reduce the labor intensity and time in the development of a cooling system for blades/vanes of high-temperature gas turbines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. K. Shchukin, Heat Transfer and Hydrodynamics of Internal Flows in the Fields of Mass Forces (Mashinostroenie, Moscow, 1980) [in Russian]. V. K. Shchukin, Heat Transfer and Hydrodynamics of Internal Flows in the Fields of Mass Forces (Mashinostroenie, Moscow, 1980) [in Russian].
2.
Zurück zum Zitat A. R. Lyandzberg and A. S. Latkin, Vortex Heat Exchangers and Condensation in the Vortex Flow (Kamchatskii Gos. Tekh. Univ., Petropavlovsk-Kamchatskii, 2004) [in Russian]. A. R. Lyandzberg and A. S. Latkin, Vortex Heat Exchangers and Condensation in the Vortex Flow (Kamchatskii Gos. Tekh. Univ., Petropavlovsk-Kamchatskii, 2004) [in Russian].
3.
Zurück zum Zitat A. S. Latkin, “The study of convective heat transfer in the models of vortex chambers,” Vestn. Kamchatskogo Gos. Tekh. Univ., No. 4, 90–96 (2005). A. S. Latkin, “The study of convective heat transfer in the models of vortex chambers,” Vestn. Kamchatskogo Gos. Tekh. Univ., No. 4, 90–96 (2005).
4.
Zurück zum Zitat Yu. L. Leukhin and E. N. Saburov, “The study of aerodynamics and heat transfer in the annular channels of cyclone recuperators,” Sovrem. Nauka: Issled., Idei, Rezul’taty, Tekhnol., No. 1, 123–129 (2013). Yu. L. Leukhin and E. N. Saburov, “The study of aerodynamics and heat transfer in the annular channels of cyclone recuperators,” Sovrem. Nauka: Issled., Idei, Rezul’taty, Tekhnol., No. 1, 123–129 (2013).
5.
Zurück zum Zitat S. V. Veretennikov and S. M. Khasanov, “Investigation of the thermal state of a nozzle blade with a vortex cooling system,” Vestn. Samar. Gos. Aerokosm. Univ., No. 3, 323–328 (2011). S. V. Veretennikov and S. M. Khasanov, “Investigation of the thermal state of a nozzle blade with a vortex cooling system,” Vestn. Samar. Gos. Aerokosm. Univ., No. 3, 323–328 (2011).
11.
Zurück zum Zitat V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, and V. A. Chesnova, “Technique for determination of the thermal-physical parameters affecting relative cooling depth of gas turbine blades,” Aviats. Prom-st., No. 3, 20–24 (2012). V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, and V. A. Chesnova, “Technique for determination of the thermal-physical parameters affecting relative cooling depth of gas turbine blades,” Aviats. Prom-st., No. 3, 20–24 (2012).
12.
Zurück zum Zitat A. V. Vikulin, N. L. Yaroslavtsev, and V. A. Chesnova, “Methodology for the heat design of the cooled gas turbine blades of gas turbine engines and gas turbine installations,” Nauchn. Mysl’, No. 1, 86–105 (2016). A. V. Vikulin, N. L. Yaroslavtsev, and V. A. Chesnova, “Methodology for the heat design of the cooled gas turbine blades of gas turbine engines and gas turbine installations,” Nauchn. Mysl’, No. 1, 86–105 (2016).
13.
Zurück zum Zitat V. G. Popov, A. V. Vikulin, V. A. Chesnova, and M. S. Markelov, “Effect of geometrical characteristics of the complex-shaped channels on the multi-parametric functions of heat exchange,” Aviats. Prom-st., No. 1, 17–20 (2013). V. G. Popov, A. V. Vikulin, V. A. Chesnova, and M. S. Markelov, “Effect of geometrical characteristics of the complex-shaped channels on the multi-parametric functions of heat exchange,” Aviats. Prom-st., No. 1, 17–20 (2013).
14.
Zurück zum Zitat V. G. Popov, A. V. Vikulin, V. A. Chesnova, and M. S. Markelov, “Analysis of the possibility to expand the control range of complex-shaped channel capacity of heat-stresses structures,” Aviats. Prom-st., No. 2, 25–29 (2013). V. G. Popov, A. V. Vikulin, V. A. Chesnova, and M. S. Markelov, “Analysis of the possibility to expand the control range of complex-shaped channel capacity of heat-stresses structures,” Aviats. Prom-st., No. 2, 25–29 (2013).
15.
Zurück zum Zitat V. I. Lokai, V. M. Bodunov, V. V. Zhuikov, and A. V. Shchukin, Heat Transfer in Cooled Parts of Aircraft Gas Turbine Engines (Mashinostroenie, Moscow, 1985) [in Russian]. V. I. Lokai, V. M. Bodunov, V. V. Zhuikov, and A. V. Shchukin, Heat Transfer in Cooled Parts of Aircraft Gas Turbine Engines (Mashinostroenie, Moscow, 1985) [in Russian].
16.
Zurück zum Zitat S. Z. Kopelev and S. V. Gurov, Thermal State of Aircraft Engine Structure Elements (Mashinostroenie, Moscow, 1978) [in Russian]. S. Z. Kopelev and S. V. Gurov, Thermal State of Aircraft Engine Structure Elements (Mashinostroenie, Moscow, 1978) [in Russian].
Metadaten
Titel
Investigation of Thermohydraulic Characteristics of Vortex Chambers
verfasst von
A. V. Vikulin
N. L. Yaroslavtsev
Publikationsdatum
01.08.2020
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 8/2020
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S004060152008008X

Weitere Artikel der Ausgabe 8/2020

Thermal Engineering 8/2020 Zur Ausgabe

HEAT AND MASS TRANSFER, PROPERTIES OF WORKING FLUIDS AND MATERIALS

Method for Optimization of Heat-Exchange Units Working in Heat Recovery Systems

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Application of the Parametric Method for Profiling the Interblade Channels in the Nozzle Cascades of Axial-Flow Turbine Machines

    Premium Partner