Skip to main content
Erschienen in: Thermal Engineering 8/2020

01.08.2020 | HEAT AND MASS TRANSFER, PROPERTIES OF WORKING FLUIDS AND MATERIALS

Method for Optimization of Heat-Exchange Units Working in Heat Recovery Systems

verfasst von: O. E. Prun, A. B. Garyaev

Erschienen in: Thermal Engineering | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The optimization of heat exchangers used in heat-recovery systems of heated media exiting process plants is considered. Such systems are widespread and used in various industries: energy, engineering, ferrous metallurgy, engineering systems of buildings. The authors propose an optimization method that uses target functions that take into account the mass and size characteristics of heat exchangers as well as the difference between the heat returned to the installation and the heat equivalent of electric energy required for pumping heat carriers through heat exchangers. Independent variables are total heat capacities of the mass flow rate of the heat carriers. Possible limitations are the maximum speeds of the heat carriers causing a large hydraulic resistance along the path. It is established that the target functions have a pronounced maximum. At certain values of the operating parameters, the target function acquires negative values and the use of heat exchangers becomes impractical. To correctly select the operating parameters of a specific heat-recovery unit, it is proposed to use thermohydraulic characteristics—graphs that represent the dependence of the target function on the heat-transfer heat capacities of the mass flow rate. Such dependences are obtained as a result of multiple thermal and hydraulic checking calculations for heat exchangers. Thermohydraulic characteristics can be built for each possible temperature mode of operation of the heat exchanger. They can be attached to the technical data sheet of devices and allow to determine the optimal flow rates of heat carriers, providing maximum economy of energy recourses. They can also be used to select the desired apparatus from the standard design list. The thermal-hydraulic characteristics calculated for the devices of the most common designs are presented: a plate heat exchanger with water–water heat carriers, a tubular finned gas-liquid heat exchanger, and a plate gas-air heat exchanger. It is shown that the maximum value of the target function when using the same heat carriers lies near the diagonal of the characteristic, i.e., at approximately equal values of the heat capacity. It is also shown that the use of thermodynamic criteria for optimizing heat exchangers of heat-recovery plants is not always advisable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. D. Kalafati and V. V. Popalov, Optimization of Heat Exchangers by Heat Transfer Efficiency (Energoatomizdat, Moscow, 1986) [in Russian]. D. D. Kalafati and V. V. Popalov, Optimization of Heat Exchangers by Heat Transfer Efficiency (Energoatomizdat, Moscow, 1986) [in Russian].
2.
Zurück zum Zitat A. E. Pnyar and V. B. Kuntysh, “Optimization of flow speeds in gas–gas heat exchangers,” Energomashinostroenie, No. 4, 15–16 (1976). A. E. Pnyar and V. B. Kuntysh, “Optimization of flow speeds in gas–gas heat exchangers,” Energomashinostroenie, No. 4, 15–16 (1976).
3.
Zurück zum Zitat Termo Severnyi Potok, Ltd. – Production of Heat Transfer Equipment. Official Website. https://recuperator-termo.ru/. Termo Severnyi Potok, Ltd. – Production of Heat Transfer Equipment. Official Website. https://​recuperator-termo.​ru/​.​
5.
Zurück zum Zitat D. Thompson and B. Goldstick, “Condensation heat recovery application for industrial buildings,” Energic Eng. 81 (2), 27–58 (1984). D. Thompson and B. Goldstick, “Condensation heat recovery application for industrial buildings,” Energic Eng. 81 (2), 27–58 (1984).
6.
Zurück zum Zitat A. M. Arkharov, E. V. Dilevskaya, S. I. Kas’kov, and Yu. A. Shevich, “The designs of micro heat exchangers of cryogenic systems for cooling low-power electronic devices,” Vestn. Mezhdunar. Akad. Kholoda, No. 1 (26) (2008). https://cyberleninka.ru/article/n/konstruktsii-mikroteploobmennikov-kriogennyh-sistem-dlya-ohlazhdeniya-malomoschnyh-elektronnyh-ustroystv. A. M. Arkharov, E. V. Dilevskaya, S. I. Kas’kov, and Yu. A. Shevich, “The designs of micro heat exchangers of cryogenic systems for cooling low-power electronic devices,” Vestn. Mezhdunar. Akad. Kholoda, No. 1 (26) (2008). https://​cyberleninka.​ru/​article/​n/​konstruktsii-mikroteploobmenn​ikov-kriogennyh-sistem-dlya-ohlazhdeniya-malomoschnyh-elektronnyh-ustroystv.​
7.
Zurück zum Zitat Yu. A. Shevich, Development and Research of High-Efficiency Matrix and Planar Heat Exchangers for Compact Low-Temperature Systems and Facilities, Doctoral Dissertation in Engineering (Bauman Moscow State Technical Univ., Moscow, 2008). Yu. A. Shevich, Development and Research of High-Efficiency Matrix and Planar Heat Exchangers for Compact Low-Temperature Systems and Facilities, Doctoral Dissertation in Engineering (Bauman Moscow State Technical Univ., Moscow, 2008).
9.
Zurück zum Zitat A. B. Garyaev, N. M. Savchenkova, and G. P. Shapovalova, “Method for optimizing air cooling devices,” in Proc. Natl. Conf. on Heat Power Engineering, Kazan, Sept. 5–8,2006 (Izd. Tsentr Probl. Energ. Kazan. Nauchn. Tsentr Ross. Akad. Nauk, Kazan, 2006) pp. 326–329. A. B. Garyaev, N. M. Savchenkova, and G. P. Shapovalova, “Method for optimizing air cooling devices,” in Proc. Natl. Conf. on Heat Power Engineering, Kazan, Sept. 5–8,2006 (Izd. Tsentr Probl. Energ. Kazan. Nauchn. Tsentr Ross. Akad. Nauk, Kazan, 2006) pp. 326–329.
10.
Zurück zum Zitat A. A. Kudinov and M. V. Kalmykov, “Boiler unit with combined heat recovery of flue gases and purge water,” Teploenergetika, No. 1, 168–170 (2000). A. A. Kudinov and M. V. Kalmykov, “Boiler unit with combined heat recovery of flue gases and purge water,” Teploenergetika, No. 1, 168–170 (2000).
11.
Zurück zum Zitat E. N. Bukharkin, “Opportunities for saving energy when using condensing heat recovery units in water boilers,” Prom. Energ., No. 7, 34–37 (1998). E. N. Bukharkin, “Opportunities for saving energy when using condensing heat recovery units in water boilers,” Prom. Energ., No. 7, 34–37 (1998).
12.
Zurück zum Zitat S. K. Popov, Thermochemical Recovery in High-Temperature Heat Technology: Monograph (Mosk. Energ. Inst., Moscow, 2018) [in Russian]. S. K. Popov, Thermochemical Recovery in High-Temperature Heat Technology: Monograph (Mosk. Energ. Inst., Moscow, 2018) [in Russian].
13.
Zurück zum Zitat W. M. Kays and A. L. London, Compact Heat Exchangers (McGraw-Hill, New York, 1964; Energiya, Moscow, 1967). W. M. Kays and A. L. London, Compact Heat Exchangers (McGraw-Hill, New York, 1964; Energiya, Moscow, 1967).
Metadaten
Titel
Method for Optimization of Heat-Exchange Units Working in Heat Recovery Systems
verfasst von
O. E. Prun
A. B. Garyaev
Publikationsdatum
01.08.2020
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 8/2020
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601520080042

Weitere Artikel der Ausgabe 8/2020

Thermal Engineering 8/2020 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Application of the Parametric Method for Profiling the Interblade Channels in the Nozzle Cascades of Axial-Flow Turbine Machines

HEAT AND MASS TRANSFER, PROPERTIES OF WORKING FLUIDS AND MATERIALS

Investigation of Thermohydraulic Characteristics of Vortex Chambers

    Premium Partner