Skip to main content

2019 | OriginalPaper | Buchkapitel

Application of Sustainable Nanocomposites for Water Purification Process

verfasst von : Hayelom Dargo Beyene, Tekilt Gebregiorgs Ambaye

Erschienen in: Sustainable Polymer Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, the rapid growth of industrialization, urbanization, population growth, and climate change have played a role in pollution of water resources. Lack of fresh and pure water is reflected as the main risk to many countries. In recent years, water purification methods are the focus and attention of the many scientist and governmental agencies. Scholars everywhere around the world are concentrating on nanotechnology centred water purification/treatment methods for efficient and effective sanitization of water bodies. Nanoscale composite materials have a huge potential to purify water in numerous ways, due to their high surface area, high chemical reactivity, excellent mechanical strength, and cost-effectiveness. Nanocomposites are intelligent to eliminate bacteria, viruses, and inorganic and organic pollutants from wastewater due to precise binding action (chelation, absorption, ion exchange). Nanocomposite materials are contributed an active role in water purification, such as metal nanocomposite, metal oxide nanocomposite, carbon nanocomposite, polymer nanocomposite and membranes nanocomposite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat WHO/UNICEF (2014) Progress on drinking water and sanitation. Monitoring Programme update, WHO report, pp 1–18 WHO/UNICEF (2014) Progress on drinking water and sanitation. Monitoring Programme update, WHO report, pp 1–18
2.
Zurück zum Zitat Dargo H, Ayaliew A, Kassa H (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23 Dargo H, Ayaliew A, Kassa H (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23
3.
Zurück zum Zitat Liang XJ, Kumar A, Shi D, Cui D (2012) Nanostructures for medicine and pharmaceuticals. J Nanomaterials 2012:2012–2014 Liang XJ, Kumar A, Shi D, Cui D (2012) Nanostructures for medicine and pharmaceuticals. J Nanomaterials 2012:2012–2014
4.
Zurück zum Zitat Kusior A, Klich-Kafel J, Trenczek-Zajac A, Swierczek K, Radecka M, Zakrzewska K (2013) TiO2-SnO2 nanomaterials for gas sensing and photocatalysis. J Eur Ceram Soc 33(12):2285–2290CrossRef Kusior A, Klich-Kafel J, Trenczek-Zajac A, Swierczek K, Radecka M, Zakrzewska K (2013) TiO2-SnO2 nanomaterials for gas sensing and photocatalysis. J Eur Ceram Soc 33(12):2285–2290CrossRef
5.
Zurück zum Zitat Diana S, Luigi R, Vincenzo V (2017) Progress in Nanomaterials Applications for Water Purification, In: Lofrano, Gi, Libralato, Giovanni, Brown, Jeanette (Eds) Nanotechnologies for Environmental Remediation, Applications and Implications, 1st ed, pp 1–24. Springer International Publishing AG Diana S, Luigi R, Vincenzo V (2017) Progress in Nanomaterials Applications for Water Purification, In: Lofrano, Gi, Libralato, Giovanni, Brown, Jeanette (Eds) Nanotechnologies for Environmental Remediation, Applications and Implications, 1st ed, pp 1–24. Springer International Publishing AG
6.
Zurück zum Zitat Lu H et al (2014) An overveiw of nanomaterials for water and wastewater treatment. J Environ Anal Chem 2016(2):10–12 Lu H et al (2014) An overveiw of nanomaterials for water and wastewater treatment. J Environ Anal Chem 2016(2):10–12
7.
Zurück zum Zitat Mueller NC et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRef Mueller NC et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRef
8.
Zurück zum Zitat Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831CrossRef Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831CrossRef
9.
Zurück zum Zitat Kumar D, Parashar A, Chandrasekaran N, Mukherjee A (2017) The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system. 3 Biotech 7(3):1–9 Kumar D, Parashar A, Chandrasekaran N, Mukherjee A (2017) The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system. 3 Biotech 7(3):1–9
10.
Zurück zum Zitat Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRef Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRef
11.
Zurück zum Zitat Amin MT, Alazba AA, Manzoor U (2014) A review on removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng vol 2014:ID 825910 Amin MT, Alazba AA, Manzoor U (2014) A review on removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng vol 2014:ID 825910
12.
Zurück zum Zitat Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8(4):471–482CrossRef Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8(4):471–482CrossRef
13.
Zurück zum Zitat Marková Z et al (2013) Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ Sci Technol 47(10):5285–5293CrossRef Marková Z et al (2013) Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ Sci Technol 47(10):5285–5293CrossRef
14.
Zurück zum Zitat Muradova GG, Gadjieva SR, Di L, Vilardi G (2016) Nitrates removal by bimetallic nanoparticles in water. Chem Eng Trans 47:205–210 Muradova GG, Gadjieva SR, Di L, Vilardi G (2016) Nitrates removal by bimetallic nanoparticles in water. Chem Eng Trans 47:205–210
15.
Zurück zum Zitat Xiong Z, Lai B, Yang P, Zhou Y, Wang J, Fang S (2015) Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N < inf > 2</inf > air or without aeration. J Hazard Mater 297:261–268CrossRef Xiong Z, Lai B, Yang P, Zhou Y, Wang J, Fang S (2015) Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N < inf > 2</inf > air or without aeration. J Hazard Mater 297:261–268CrossRef
16.
Zurück zum Zitat Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19(45):8671–8677CrossRef Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19(45):8671–8677CrossRef
17.
Zurück zum Zitat Sun Z, Song G, Du R, Hu X (2017) Modification of a Pd-loaded electrode with a carbon nanotubes-polypyrrole interlayer and its dechlorination performance for 2,3-dichlorophenol. RSC Adv 7(36):22054–22062CrossRef Sun Z, Song G, Du R, Hu X (2017) Modification of a Pd-loaded electrode with a carbon nanotubes-polypyrrole interlayer and its dechlorination performance for 2,3-dichlorophenol. RSC Adv 7(36):22054–22062CrossRef
18.
Zurück zum Zitat Arancibia-Miranda N et al (2016) Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380CrossRef Arancibia-Miranda N et al (2016) Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380CrossRef
19.
Zurück zum Zitat Ling L, Pan B, Zhang WX (2014) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se (IV). Water Res 71(34):274–281 Ling L, Pan B, Zhang WX (2014) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se (IV). Water Res 71(34):274–281
20.
Zurück zum Zitat Ling L, Zhang WX (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791CrossRef Ling L, Zhang WX (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791CrossRef
21.
Zurück zum Zitat Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664CrossRef Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664CrossRef
22.
Zurück zum Zitat Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13(1):1–12CrossRef Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13(1):1–12CrossRef
23.
Zurück zum Zitat Morones JR et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRef Morones JR et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRef
24.
Zurück zum Zitat Surendhiran D, Sirajunnisa A, Tamilselvam K (2017) Silver–magnetic nanocomposites for water purification. Environ Chem Lett 15(3):367–386CrossRef Surendhiran D, Sirajunnisa A, Tamilselvam K (2017) Silver–magnetic nanocomposites for water purification. Environ Chem Lett 15(3):367–386CrossRef
25.
Zurück zum Zitat Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRef Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRef
26.
Zurück zum Zitat Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008CrossRef Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008CrossRef
27.
Zurück zum Zitat Mlalila NG, Swai HS, Hilonga A, Kadam DM (2017) Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol Sci Appl 10:1–9CrossRef Mlalila NG, Swai HS, Hilonga A, Kadam DM (2017) Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol Sci Appl 10:1–9CrossRef
28.
Zurück zum Zitat Ishida H, Campbell S, Blackwell J (2000) General approach to nanocomposite preparation. Chem Mater 12(5):1260–1267CrossRef Ishida H, Campbell S, Blackwell J (2000) General approach to nanocomposite preparation. Chem Mater 12(5):1260–1267CrossRef
29.
Zurück zum Zitat Tapas RS (2017) Polymer Nanocomposites for Environmental Applications. In: Deba KT, Bibhu PS (Eds) Properties and Applications of Polymer Nanocomposites, Clay and Carbon Based Polymer Nanocomposites, 1st ed, pp 77-99. Springer-Verlag GmbH Germany Tapas RS (2017) Polymer Nanocomposites for Environmental Applications. In: Deba KT, Bibhu PS (Eds) Properties and Applications of Polymer Nanocomposites, Clay and Carbon Based Polymer Nanocomposites, 1st ed, pp 77-99. Springer-Verlag GmbH Germany
30.
Zurück zum Zitat Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17CrossRef Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17CrossRef
32.
Zurück zum Zitat Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652CrossRef Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652CrossRef
33.
Zurück zum Zitat de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253CrossRef de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253CrossRef
34.
Zurück zum Zitat Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303 Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303
35.
Zurück zum Zitat Zare Y, Shabani I (2016) Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C 60:195–203CrossRef Zare Y, Shabani I (2016) Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C 60:195–203CrossRef
36.
Zurück zum Zitat Veprek S, Veprek-Heijman MJG (2008) Industrial applications of superhard nanocomposite coatings. Surf Coat Technol 202(21):5063–5073CrossRef Veprek S, Veprek-Heijman MJG (2008) Industrial applications of superhard nanocomposite coatings. Surf Coat Technol 202(21):5063–5073CrossRef
37.
Zurück zum Zitat Zhang R et al (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45(21):5888–5924CrossRef Zhang R et al (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45(21):5888–5924CrossRef
38.
Zurück zum Zitat Galiano F et al (2015) A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. J Membr Sci 482:103–114CrossRef Galiano F et al (2015) A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. J Membr Sci 482:103–114CrossRef
39.
Zurück zum Zitat Manawi Y, Kochkodan V, Hussein MA, Khaleel MA, Khraisheh M, Hilal N (2016) Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination 391:69–88CrossRef Manawi Y, Kochkodan V, Hussein MA, Khaleel MA, Khraisheh M, Hilal N (2016) Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination 391:69–88CrossRef
40.
Zurück zum Zitat Senusi F, Shahadat M, Ismail S, Hamid SA (2018) Recent advancement in membrane technology for water purification, In : Oves M (ed) Modern age environmental problems and their remediation, Recent Advancement, 1st edn. Springer International Publishing AG, pp 1–237 Senusi F, Shahadat M, Ismail S, Hamid SA (2018) Recent advancement in membrane technology for water purification, In : Oves M (ed) Modern age environmental problems and their remediation, Recent Advancement, 1st edn. Springer International Publishing AG, pp 1–237
41.
Zurück zum Zitat Zhang Y et al (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4:22–39CrossRef Zhang Y et al (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4:22–39CrossRef
42.
Zurück zum Zitat Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2(1):17–42CrossRef Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2(1):17–42CrossRef
43.
Zurück zum Zitat Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81CrossRef Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81CrossRef
44.
Zurück zum Zitat Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265CrossRef Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265CrossRef
45.
Zurück zum Zitat Lin S, Huang R, Cheng Y, Liu J, Lau BLT, Wiesner MR (2013) Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res 47(12):3959–3965CrossRef Lin S, Huang R, Cheng Y, Liu J, Lau BLT, Wiesner MR (2013) Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res 47(12):3959–3965CrossRef
46.
Zurück zum Zitat Yahyaei B, Azizian S, Mohammadzadeh A, Pajohi-Alamoti M (2015) Chemical and biological treatment of waste water with a novel silver/ordered mesoporous alumina nanocomposite. J Iran Chem Soc 12(1):167–174CrossRef Yahyaei B, Azizian S, Mohammadzadeh A, Pajohi-Alamoti M (2015) Chemical and biological treatment of waste water with a novel silver/ordered mesoporous alumina nanocomposite. J Iran Chem Soc 12(1):167–174CrossRef
47.
Zurück zum Zitat Firdhouse MJ, Lalitha P (2016) Nanosilver-decorated nanographene and their adsorption performance in waste water treatment. Bioresour Bioprocess 3(1):12CrossRef Firdhouse MJ, Lalitha P (2016) Nanosilver-decorated nanographene and their adsorption performance in waste water treatment. Bioresour Bioprocess 3(1):12CrossRef
48.
Zurück zum Zitat Liu X, Chen Z, Chen Z, Megharaj M, Naidu R (2013) Remediation of direct black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles. Chem Eng J 223:764–771CrossRef Liu X, Chen Z, Chen Z, Megharaj M, Naidu R (2013) Remediation of direct black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles. Chem Eng J 223:764–771CrossRef
49.
Zurück zum Zitat Lateef A, Nazir R (2017) Metal nanocomposites : synthesis, characterization and their applications, In: P. DS, (ed) Science and applications of tailored nanostructures, 1st edn. One central press, Italy, pp 239–240 Lateef A, Nazir R (2017) Metal nanocomposites : synthesis, characterization and their applications, In: P. DS, (ed) Science and applications of tailored nanostructures, 1st edn. One central press, Italy, pp 239–240
50.
Zurück zum Zitat Ray C, Pal T (2017) Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487CrossRef Ray C, Pal T (2017) Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487CrossRef
51.
Zurück zum Zitat Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chem Eng J 235:1–9CrossRef Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chem Eng J 235:1–9CrossRef
52.
Zurück zum Zitat Ihsanullah, Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA (2015) Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties. J Mol Liq 206(February):176–182CrossRef Ihsanullah, Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA (2015) Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties. J Mol Liq 206(February):176–182CrossRef
53.
Zurück zum Zitat Liang J et al (2015) Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem Eng J 273:101–110CrossRef Liang J et al (2015) Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem Eng J 273:101–110CrossRef
54.
Zurück zum Zitat Mallakpour S, Khadem E (2016) Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem Eng J 302(May):344–367CrossRef Mallakpour S, Khadem E (2016) Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem Eng J 302(May):344–367CrossRef
55.
Zurück zum Zitat Ming-Zheng G, Chun-Yan C, Jian-Ying H, Shu-Hui L, Song-Nan Z, Shu D, Qing-Song L, Ke-Qin Z, Yue-Kun L (2016) Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnol Rev 5(1). https://doi.org/10.1515/ntrev-2015-0049 Ming-Zheng G, Chun-Yan C, Jian-Ying H, Shu-Hui L, Song-Nan Z, Shu D, Qing-Song L, Ke-Qin Z, Yue-Kun L (2016) Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnol Rev 5(1). https://​doi.​org/​10.​1515/​ntrev-2015-0049
56.
Zurück zum Zitat Silva CG, Faria JL (2010) Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl Catal B Environ 101(1–2):81–89CrossRef Silva CG, Faria JL (2010) Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl Catal B Environ 101(1–2):81–89CrossRef
57.
Zurück zum Zitat Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Appl Catal B Environ 102(3–4):563–571CrossRef Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Appl Catal B Environ 102(3–4):563–571CrossRef
58.
Zurück zum Zitat Li J, Zhen D, Sui G, Zhang C, Deng Q, Jia L (2012) Nanocomposite of Cu–TiO < SUB > 2</SUB > –SiO < SUB > 2</SUB > with high photoactive performance for degradation of rhodamine B dye in aqueous wastewater. J Nanosci Nanotechnol 12(8):6265–6270CrossRef Li J, Zhen D, Sui G, Zhang C, Deng Q, Jia L (2012) Nanocomposite of Cu–TiO < SUB > 2</SUB > –SiO < SUB > 2</SUB > with high photoactive performance for degradation of rhodamine B dye in aqueous wastewater. J Nanosci Nanotechnol 12(8):6265–6270CrossRef
59.
Zurück zum Zitat Khan M et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808CrossRef Khan M et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808CrossRef
60.
Zurück zum Zitat Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21(10):3350–3352CrossRef Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21(10):3350–3352CrossRef
61.
Zurück zum Zitat Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986CrossRef Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986CrossRef
62.
Zurück zum Zitat Geng Z et al (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22(8):3527–3535CrossRef Geng Z et al (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22(8):3527–3535CrossRef
63.
Zurück zum Zitat Saad AHA, Azzam AM, El-Wakeel ST, Mostafa BB, Abd El-latif MB (2018) Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag 9(August):67–75 Saad AHA, Azzam AM, El-Wakeel ST, Mostafa BB, Abd El-latif MB (2018) Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag 9(August):67–75
64.
Zurück zum Zitat Singh P et al (2018) Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties. Appl Nanosci 8(1–2):1–9CrossRef Singh P et al (2018) Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties. Appl Nanosci 8(1–2):1–9CrossRef
65.
Zurück zum Zitat Huang L, He M, Chen B, Hu B (2018) Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere 199:435–444CrossRef Huang L, He M, Chen B, Hu B (2018) Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere 199:435–444CrossRef
66.
Zurück zum Zitat Gong JL et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2–3):1517–1522CrossRef Gong JL et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2–3):1517–1522CrossRef
67.
Zurück zum Zitat Chen L et al (2016) Facile synthesis of mesoporous carbon nanocomposites from natural biomass for efficient dye adsorption and selective heavy metal removal. RSC Adv 6(3):2259–2269CrossRef Chen L et al (2016) Facile synthesis of mesoporous carbon nanocomposites from natural biomass for efficient dye adsorption and selective heavy metal removal. RSC Adv 6(3):2259–2269CrossRef
68.
Zurück zum Zitat Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chem Eng J 236:39–46CrossRef Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chem Eng J 236:39–46CrossRef
69.
Zurück zum Zitat Muneeb M, Zahoor M, Muhammad B, AliKhan F, Ullah R, AbdEI-Salam NM (2017) Removal of heavy metals from drinking water by magnetic carbon nanostructures prepared from biomass. J Nanomater 2017:10 Muneeb M, Zahoor M, Muhammad B, AliKhan F, Ullah R, AbdEI-Salam NM (2017) Removal of heavy metals from drinking water by magnetic carbon nanostructures prepared from biomass. J Nanomater 2017:10
70.
Zurück zum Zitat Tian T et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6(11):8542–8548CrossRef Tian T et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6(11):8542–8548CrossRef
71.
Zurück zum Zitat Zarei M (2017) Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. TrAC - Trends Anal Chem 93:7–22CrossRef Zarei M (2017) Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. TrAC - Trends Anal Chem 93:7–22CrossRef
72.
Zurück zum Zitat Zhao S et al (2012) Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive. Ind Eng Chem Res 51(12):4661–4672CrossRef Zhao S et al (2012) Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive. Ind Eng Chem Res 51(12):4661–4672CrossRef
73.
Zurück zum Zitat Pan B, Xu J, Wu B, Li Z, Liu X (2013) Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 47(16):9347–9354CrossRef Pan B, Xu J, Wu B, Li Z, Liu X (2013) Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 47(16):9347–9354CrossRef
74.
Zurück zum Zitat Settanni, G, Zhou, J, Suo, T, Schöttler, S, Landfester, K, Schmid, F, Mailänder, V (2017) Protein corona composition of poly (ethylene glycol)- and poly (phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale 9(6):2138–2144 Settanni, G, Zhou, J, Suo, T, Schöttler, S, Landfester, K, Schmid, F, Mailänder, V (2017) Protein corona composition of poly (ethylene glycol)- and poly (phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale 9(6):2138–2144
75.
Zurück zum Zitat Kelta B, Taddesse AM, Yadav OP, Diaz I, Mayoral Á (2017) Nano-crystalline titanium (IV) tungstomolybdate cation exchanger: Synthesis, characterization and ion exchange properties. J Environ Chem Eng 5(1):1004–1014CrossRef Kelta B, Taddesse AM, Yadav OP, Diaz I, Mayoral Á (2017) Nano-crystalline titanium (IV) tungstomolybdate cation exchanger: Synthesis, characterization and ion exchange properties. J Environ Chem Eng 5(1):1004–1014CrossRef
76.
Zurück zum Zitat Zhang L, Liu J, Guo X (2018) Investigation on mechanism of phosphate removal on carbonized sludge adsorbent. J Environ Sci (China) 64:335–344CrossRef Zhang L, Liu J, Guo X (2018) Investigation on mechanism of phosphate removal on carbonized sludge adsorbent. J Environ Sci (China) 64:335–344CrossRef
77.
Zurück zum Zitat Vunain E, Mishra AK, Mamba BB (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586CrossRef Vunain E, Mishra AK, Mamba BB (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586CrossRef
78.
Zurück zum Zitat Djerahov L, Vasileva P, Karadjova I, Kurakalva RM, Aradhi KK (2016) Chitosan film loaded with silver nanoparticles - Sorbent for solid phase extraction of Al (III), Cd (II), Cu (II), Co (II), Fe (III), Ni (II), Pb (II) and Zn (II). Carbohydr Polym 147(March):45–52CrossRef Djerahov L, Vasileva P, Karadjova I, Kurakalva RM, Aradhi KK (2016) Chitosan film loaded with silver nanoparticles - Sorbent for solid phase extraction of Al (III), Cd (II), Cu (II), Co (II), Fe (III), Ni (II), Pb (II) and Zn (II). Carbohydr Polym 147(March):45–52CrossRef
79.
Zurück zum Zitat Saxena S, Saxena U (2016) Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment. Int Nano Lett 6(4):223–234CrossRef Saxena S, Saxena U (2016) Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment. Int Nano Lett 6(4):223–234CrossRef
80.
Zurück zum Zitat Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946CrossRef Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946CrossRef
81.
Zurück zum Zitat Zayed A et al (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91(1):322–332CrossRef Zayed A et al (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91(1):322–332CrossRef
82.
Zurück zum Zitat Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res 44(6):1927–1933CrossRef Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res 44(6):1927–1933CrossRef
83.
Zurück zum Zitat Piri S, Zanjani ZA, Piri F, Zamani A, Yaftian M, Davari M (2016) Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb (II) ions from contaminated waters; kinetics and thermodynamic study. J Environ Health Sci Eng 14(1):1–10CrossRef Piri S, Zanjani ZA, Piri F, Zamani A, Yaftian M, Davari M (2016) Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb (II) ions from contaminated waters; kinetics and thermodynamic study. J Environ Health Sci Eng 14(1):1–10CrossRef
84.
Zurück zum Zitat Nithya R, Sudha PN (2017) Removal of heavy metals from tannery effluent using chitosan-g-poly (butyl acrylate)/bentonite nanocomposite as an adsorbent. Text Cloth Sustain 2(1):7CrossRef Nithya R, Sudha PN (2017) Removal of heavy metals from tannery effluent using chitosan-g-poly (butyl acrylate)/bentonite nanocomposite as an adsorbent. Text Cloth Sustain 2(1):7CrossRef
85.
Zurück zum Zitat Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275CrossRef Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275CrossRef
86.
Zurück zum Zitat Shen YX, Saboe PO, Sines IT, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Memb Sci 454:359–381CrossRef Shen YX, Saboe PO, Sines IT, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Memb Sci 454:359–381CrossRef
87.
Zurück zum Zitat Hernández S, Saad A, Ormsbee L, Bhattacharyya D (2016) Nanocomposite and responsive membranes for water treatment, In: Hankins NP, Singh R (ed) Emerging membrane technology for sustainable water treatment, 1st edn. Elsevier B.V., USA, pp 389–431 Hernández S, Saad A, Ormsbee L, Bhattacharyya D (2016) Nanocomposite and responsive membranes for water treatment, In: Hankins NP, Singh R (ed) Emerging membrane technology for sustainable water treatment, 1st edn. Elsevier B.V., USA, pp 389–431
88.
Zurück zum Zitat Nasreen SAAN, Sundarrajan S, Nizar SAS, Balamurugan R, Ramakrishna S (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membr (Basel) 3(4):266–284 Nasreen SAAN, Sundarrajan S, Nizar SAS, Balamurugan R, Ramakrishna S (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membr (Basel) 3(4):266–284
89.
Zurück zum Zitat Fard AK et al (2018) Inorganic membranes: preparation and application for water treatment and desalination. Mater (Basel) 11(1):74CrossRef Fard AK et al (2018) Inorganic membranes: preparation and application for water treatment and desalination. Mater (Basel) 11(1):74CrossRef
90.
Zurück zum Zitat Razzaq H, Nawaz H, Siddiqa A, Siddiq M, Qaisar S (2016) Madridge a brief review on nanocomposites based on PVDF with nanostructured TiO2 as filler. J Nanotechnol 1(1):29–35 Razzaq H, Nawaz H, Siddiqa A, Siddiq M, Qaisar S (2016) Madridge a brief review on nanocomposites based on PVDF with nanostructured TiO2 as filler. J Nanotechnol 1(1):29–35
91.
Zurück zum Zitat Pant HR et al (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33CrossRef Pant HR et al (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33CrossRef
92.
Zurück zum Zitat Daraei P et al (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe 3O 4 nanoparticles with enhanced performance for Cu (II) removal from water. J Membr Sci 415–416:250–259CrossRef Daraei P et al (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe 3O 4 nanoparticles with enhanced performance for Cu (II) removal from water. J Membr Sci 415–416:250–259CrossRef
93.
Zurück zum Zitat Tetala KKR, Stamatialis DF (2013) Mixed matrix membranes for efficient adsorption of copper ions from aqueous solutions. Sep Purif Technol 104:214–220CrossRef Tetala KKR, Stamatialis DF (2013) Mixed matrix membranes for efficient adsorption of copper ions from aqueous solutions. Sep Purif Technol 104:214–220CrossRef
94.
Zurück zum Zitat Lopez Goerne TM (2011) Study of Bacterial Sensitivity to Ag-TiO2 Nanoparticles. J Nanomed Nanotechnol s5(01):2CrossRef Lopez Goerne TM (2011) Study of Bacterial Sensitivity to Ag-TiO2 Nanoparticles. J Nanomed Nanotechnol s5(01):2CrossRef
95.
Zurück zum Zitat Liu S, Fang F, Wu J, Zhang K (2015) The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination 375(November):121–128CrossRef Liu S, Fang F, Wu J, Zhang K (2015) The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination 375(November):121–128CrossRef
96.
Zurück zum Zitat Tewari PK (2016) Nanocomposite membrane technology, 1st edn. CRC Press Taylor & Francis Group, Boca Raton Tewari PK (2016) Nanocomposite membrane technology, 1st edn. CRC Press Taylor & Francis Group, Boca Raton
97.
Zurück zum Zitat Ladewig B, Al-Shaeli MNZ (2017) Fundamental of membrane process. In: Ladewig B, Al-Shaeli MNZ (eds) Fundamentals of membrane bioreactors, 1st edn. Springer Nature Singapore, Singapore, pp 13–38CrossRef Ladewig B, Al-Shaeli MNZ (2017) Fundamental of membrane process. In: Ladewig B, Al-Shaeli MNZ (eds) Fundamentals of membrane bioreactors, 1st edn. Springer Nature Singapore, Singapore, pp 13–38CrossRef
98.
Zurück zum Zitat Jamshidi Gohari R, Halakoo E, Nazri NAM, Lau WJ, Matsuura T, Ismail AF (2014) Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335(1):87–95CrossRef Jamshidi Gohari R, Halakoo E, Nazri NAM, Lau WJ, Matsuura T, Ismail AF (2014) Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335(1):87–95CrossRef
99.
Zurück zum Zitat Jamshidi Gohari R, Lau WJ, Matsuura T, Ismail AF (2013) Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of as (III) from contaminated water solution. Sep Purif Technol 118:64–72CrossRef Jamshidi Gohari R, Lau WJ, Matsuura T, Ismail AF (2013) Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of as (III) from contaminated water solution. Sep Purif Technol 118:64–72CrossRef
100.
Zurück zum Zitat Akar N, Asar B, Dizge N, Koyuncu I (2013) Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Membr Sci 437:216–226CrossRef Akar N, Asar B, Dizge N, Koyuncu I (2013) Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Membr Sci 437:216–226CrossRef
101.
Zurück zum Zitat Manjarrez Nevárez L et al (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86(2):732–741CrossRef Manjarrez Nevárez L et al (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86(2):732–741CrossRef
102.
Zurück zum Zitat Jeong BH et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1–2):1–7CrossRef Jeong BH et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1–2):1–7CrossRef
103.
Zurück zum Zitat Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971CrossRef Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971CrossRef
104.
Zurück zum Zitat Lind ML, Suk DE, Nguyen TV, Hoek EMV (2010) Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ Sci Technol 44(21):8230–8235CrossRef Lind ML, Suk DE, Nguyen TV, Hoek EMV (2010) Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ Sci Technol 44(21):8230–8235CrossRef
105.
Zurück zum Zitat Maximous N, Nakhla G, Wong K, Wan W (2010) Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol 73(2):294–301CrossRef Maximous N, Nakhla G, Wong K, Wan W (2010) Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol 73(2):294–301CrossRef
106.
Zurück zum Zitat Pendergast MTM, Nygaard JM, Ghosh AK, Hoek EMV (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261(3):255–263CrossRef Pendergast MTM, Nygaard JM, Ghosh AK, Hoek EMV (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261(3):255–263CrossRef
107.
Zurück zum Zitat Qin D, Liu Z, Delai Sun D, Song X, Bai H (2015) A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater. Sci Rep 5(January):1–14 Qin D, Liu Z, Delai Sun D, Song X, Bai H (2015) A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater. Sci Rep 5(January):1–14
Metadaten
Titel
Application of Sustainable Nanocomposites for Water Purification Process
verfasst von
Hayelom Dargo Beyene
Tekilt Gebregiorgs Ambaye
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.