Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

22.03.2018 | Methodologies and Application | Ausgabe 5/2019

Soft Computing 5/2019

ARD-PRED: an in silico tool for predicting age-related-disorder-associated proteins

Zeitschrift:
Soft Computing > Ausgabe 5/2019
Autoren:
Kirti Bhadhadhara, Yasha Hasija
Wichtige Hinweise
Communicated by V. Loia.

Abstract

Interactions among various proteins largely govern cellular processes, and this leads to numerous efforts toward extraction of information related to the proteins, their interactions and the function which is determined by these interactions. The main concern of the study is to present interface analysis of age-related-disorder (ARD)-related proteins to shed light on details of the interactions. It also emphasizes on the importance of using structures in network studies. A major goal in the post-genomic era is to identify and characterize disease susceptibility of genes and to apply this knowledge to disease prevention and treatment. Attempts have been made to integrate biological knowledge of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways into the genomics field. Many gene set analysis methods have been used to detect disease-related risk pathways. The present study combines the network-centered approach with three-dimensional structures to comprehend the biology behind ARDs. Interface properties of the interacting complexes have been used as descriptors to classify age-related associated proteins and non-age-related associated proteins. Machine learning has been used to generate a classifier which is used to predict potential age-related proteins. The ARD-PRED tool achieved an overall accuracy in terms of precision score 81.5, recall score 81.2, accuracy value 79 and ROC Area score 89.6, F-measure 81.1. The tool has been made online at http://​genomeinformatic​s.​dtu.​ac.​in/​ARD-PRED/​. The present work would comprehend ongoing research in the field of ARDs and would also significantly improvise the understanding of the molecular mechanism of age-related diseases.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Soft Computing 5/2019 Zur Ausgabe

Premium Partner

    Bildnachweise