Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2021

26.04.2021

Assessment of crystallographic and magnetic phase stabilities of cubic copper ferrite at shocked conditions

verfasst von: A. Sivakumar, S. Sahaya Jude Dhas, Abdulrahman I. Almansour, Raju Suresh Kumar, Natarajan Arumugam, S. A. Martin Britto Dhas

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, dynamic shock wave-driven investigation carried out on the crystallographic phase stabilities of nano-materials has led to the accumulation of massive explosion of innovations which materialize in identifying the efficient materials so that such kinds of assessments are highly required before putting them into practical applications. Surprisingly, at shocked conditions, most of the materials are found to have undergone phase transition or a variety of changes have been observed in their stability as well as efficiency. Hence, device engineers are highly focused on the search of high shock-resistant materials for applications point of view especially for aerospace, defense, and military applications. In the present context, we have chosen one of the most familiar divalent metal ferrites of cubic copper ferrite nanocrystalline material (CuFe2O4 NPs) for the analysis of structural stability and the results have been screened by X-ray diffraction (XRD) as well as ultra-violet diffuse reflectance spectroscopic (UV-DRS) techniques. Magnetic phase stability has been evaluated by vibrating sample magnetometer (VSM). Interestingly, the title ferrite does not experience any crystallographic and magnetic phase transition even though it has polymorphic nature and variety of magnetic states. Therefore, it could be confirmed that CuFe2O4 NPs have considerable shock-resistant behavior for both crystallographic and magnetic phases. The results are discussed in the upcoming sections.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.D. Saccone, S. Ferrari, D. Errandonea, F. Grinblat, V. Bilovol, S. Agouram, Cobalt ferrite nanoparticles under high pressure. J. Appl. Phys. 118, 075903 (2015)CrossRef F.D. Saccone, S. Ferrari, D. Errandonea, F. Grinblat, V. Bilovol, S. Agouram, Cobalt ferrite nanoparticles under high pressure. J. Appl. Phys. 118, 075903 (2015)CrossRef
2.
Zurück zum Zitat Z. Wang, P. Lazor, S.K. Saxena, H.S. O’Neill, High pressure Raman spectroscopy of ferrite MgFe2O4. Mater. Res. Bull. 37, 1589–1602 (2002)CrossRef Z. Wang, P. Lazor, S.K. Saxena, H.S. O’Neill, High pressure Raman spectroscopy of ferrite MgFe2O4. Mater. Res. Bull. 37, 1589–1602 (2002)CrossRef
3.
Zurück zum Zitat Z. Wang, R.T. Downs, V. Pischedda, R. Shetty, S.K. Saxena, C.S. Zha, Y.S. Zhao, D. Schiferl, A. Waskowska, High-pressure x-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4. Phys. Rev. B 68, 094101 (2003)CrossRef Z. Wang, R.T. Downs, V. Pischedda, R. Shetty, S.K. Saxena, C.S. Zha, Y.S. Zhao, D. Schiferl, A. Waskowska, High-pressure x-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4. Phys. Rev. B 68, 094101 (2003)CrossRef
5.
Zurück zum Zitat D. Levy, A. Pavese, M. Hanfland, Phase transition of synthetic zinc spinel ferrite (ZnFe2O4) at high pressure from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 27, 638–644 (2000)CrossRef D. Levy, A. Pavese, M. Hanfland, Phase transition of synthetic zinc spinel ferrite (ZnFe2O4) at high pressure from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 27, 638–644 (2000)CrossRef
6.
7.
Zurück zum Zitat B. Li, Y. Ding, W. Yang, L. Wang, B. Zou, J. Shu, S. Sinogeikin, C. Park, G. Zou, H.K. Mao, Calcium with the β-tin structure at high pressure and low temperature. PNAS 109, 16459–16462 (2012)CrossRef B. Li, Y. Ding, W. Yang, L. Wang, B. Zou, J. Shu, S. Sinogeikin, C. Park, G. Zou, H.K. Mao, Calcium with the β-tin structure at high pressure and low temperature. PNAS 109, 16459–16462 (2012)CrossRef
8.
Zurück zum Zitat A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Impact of shock waves on vibrational and structural properties of glycine phosphite. Solid State Sci. 110, 106452 (2020)CrossRef A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Impact of shock waves on vibrational and structural properties of glycine phosphite. Solid State Sci. 110, 106452 (2020)CrossRef
9.
Zurück zum Zitat K. Ichiyanagi, S. Takagi, N. Kawai, R. Fukaya, S. Nozawa, K.G. Nakamura, K.D. Liss, M. Kimura, S.I. Adachi, Microstructural deformation process of shock-compressed polycrystalline aluminum. Sci. Rep. 9, 7604 (2019)CrossRef K. Ichiyanagi, S. Takagi, N. Kawai, R. Fukaya, S. Nozawa, K.G. Nakamura, K.D. Liss, M. Kimura, S.I. Adachi, Microstructural deformation process of shock-compressed polycrystalline aluminum. Sci. Rep. 9, 7604 (2019)CrossRef
10.
Zurück zum Zitat V. Jayaram, K.P.J. Reddy, Catalytic effect of CeO2-stabilized ZrO2 ceramics with strong shock-heated mono- and Di-atomic gases. J. Am. Ceram. Soc. 99, 4128–4136 (2016)CrossRef V. Jayaram, K.P.J. Reddy, Catalytic effect of CeO2-stabilized ZrO2 ceramics with strong shock-heated mono- and Di-atomic gases. J. Am. Ceram. Soc. 99, 4128–4136 (2016)CrossRef
11.
Zurück zum Zitat N.K. Reddy, V. Jayaram, E. Arunan, Y.B. Kwon, W.J. Moon, K.P.J. Reddy, Investigations on high enthalpy shock wave exposed graphitic carbon nanoparticles. Diam. Relat. Mater. 35, 53–57 (2013)CrossRef N.K. Reddy, V. Jayaram, E. Arunan, Y.B. Kwon, W.J. Moon, K.P.J. Reddy, Investigations on high enthalpy shock wave exposed graphitic carbon nanoparticles. Diam. Relat. Mater. 35, 53–57 (2013)CrossRef
12.
Zurück zum Zitat S. Zhaoa, B. Kada, B.A. Remington, J.C. La Salvia, C.E. Wehrenberg, K.D. Behler, M.A. Meyers, Directional amorphization of boron carbide subjected to laser shock compression. PNAS 13, 1–6 (2016) S. Zhaoa, B. Kada, B.A. Remington, J.C. La Salvia, C.E. Wehrenberg, K.D. Behler, M.A. Meyers, Directional amorphization of boron carbide subjected to laser shock compression. PNAS 13, 1–6 (2016)
13.
Zurück zum Zitat S. Kalaiarasi, A. Sivakumar, S.A.M.B. Dhas, M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 219, 72–75 (2018)CrossRef S. Kalaiarasi, A. Sivakumar, S.A.M.B. Dhas, M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 219, 72–75 (2018)CrossRef
14.
Zurück zum Zitat A. Rita, A. Sivakumar, S.A.M.B. Dhas, Investigation of structural and magnetic phase behaviour of nickel oxide nanoparticles under shock wave recovery experiment. J. Supercond. Nov. Magn. 33, 1845–1849 (2020)CrossRef A. Rita, A. Sivakumar, S.A.M.B. Dhas, Investigation of structural and magnetic phase behaviour of nickel oxide nanoparticles under shock wave recovery experiment. J. Supercond. Nov. Magn. 33, 1845–1849 (2020)CrossRef
15.
Zurück zum Zitat A. Rita, A. Sivakumar, S.A.M.B. Dhas, Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J. Nanostruct. Chem. 9, 225–230 (2019)CrossRef A. Rita, A. Sivakumar, S.A.M.B. Dhas, Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J. Nanostruct. Chem. 9, 225–230 (2019)CrossRef
16.
Zurück zum Zitat A. Rita, A. Sivakumar, M. Jose, S.A.M.B. Dhas, Shock wave recovery studies on structural and magnetic properties of α—Fe2O3 NPs. Mater. Res. Express 6, 095035 (2019)CrossRef A. Rita, A. Sivakumar, M. Jose, S.A.M.B. Dhas, Shock wave recovery studies on structural and magnetic properties of α—Fe2O3 NPs. Mater. Res. Express 6, 095035 (2019)CrossRef
17.
Zurück zum Zitat A. Sivakumar, S. Soundarya, S.S.J. Dhas, K.K. Bharathi, S.A.M.B. Dhas, Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles. J. Phys. Chem. C 124, 10755–10763 (2020)CrossRef A. Sivakumar, S. Soundarya, S.S.J. Dhas, K.K. Bharathi, S.A.M.B. Dhas, Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles. J. Phys. Chem. C 124, 10755–10763 (2020)CrossRef
18.
Zurück zum Zitat A. Rita, A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Structure, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J. Nanostruct. Chem. 10, 309–316 (2020)CrossRef A. Rita, A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Structure, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J. Nanostruct. Chem. 10, 309–316 (2020)CrossRef
19.
Zurück zum Zitat A. Sivakumar, C. Victor, M.M. Nayak, S.A.M.B. Dhas, Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions Mater. Res. Express 6, 045031 (2019)CrossRef A. Sivakumar, C. Victor, M.M. Nayak, S.A.M.B. Dhas, Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions Mater. Res. Express 6, 045031 (2019)CrossRef
20.
Zurück zum Zitat V. Mowlika, A. Sivakumar, S.A.M.B. Dhas, C.S. Naveen, A.R. Phani, R. Robert, Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J. Nanostruct. Chem. 10, 203–209 (2020)CrossRef V. Mowlika, A. Sivakumar, S.A.M.B. Dhas, C.S. Naveen, A.R. Phani, R. Robert, Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J. Nanostruct. Chem. 10, 203–209 (2020)CrossRef
21.
Zurück zum Zitat A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Assessment of crystallographic and magnetic phase stabilities on MnFe2O4 nano crystalline materials at shocked conditions . Solid State. Sci. 107, 106340 (2020)CrossRef A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Assessment of crystallographic and magnetic phase stabilities on MnFe2O4 nano crystalline materials at shocked conditions . Solid State. Sci. 107, 106340 (2020)CrossRef
22.
Zurück zum Zitat V. Mowlika, C.S. Naveen, A.R. Phani, A. Sivakumar, S.A.M.B. Dhas, R. Robert, Crystallographic and magnetic phase stabilities of NiFe2O4 nanoparticles at shocked conditions. J. Mater. Sci. 31, 14851–14858 (2020) V. Mowlika, C.S. Naveen, A.R. Phani, A. Sivakumar, S.A.M.B. Dhas, R. Robert, Crystallographic and magnetic phase stabilities of NiFe2O4 nanoparticles at shocked conditions. J. Mater. Sci. 31, 14851–14858 (2020)
23.
Zurück zum Zitat R. Zhang, Q. Yuan, R. Ma, X. Liu, C. Gao, M. Liu, C.L. Jia, H. Wang, Tuning conductivity and magnetism of CuFe2O4 via cation redistribution. RSC Adv. 7, 21926 (2017)CrossRef R. Zhang, Q. Yuan, R. Ma, X. Liu, C. Gao, M. Liu, C.L. Jia, H. Wang, Tuning conductivity and magnetism of CuFe2O4 via cation redistribution. RSC Adv. 7, 21926 (2017)CrossRef
24.
Zurück zum Zitat M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23, 315–323 (2012)CrossRef M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23, 315–323 (2012)CrossRef
25.
Zurück zum Zitat S.L. Chinke, I.S. Sandhu, D.R. Saroha, P.S. Alegaonkar, Graphene-like nanoflakes for shock absorption applications. ACS Appl. Nano Mater. 1, 6027–6037 (2018)CrossRef S.L. Chinke, I.S. Sandhu, D.R. Saroha, P.S. Alegaonkar, Graphene-like nanoflakes for shock absorption applications. ACS Appl. Nano Mater. 1, 6027–6037 (2018)CrossRef
26.
Zurück zum Zitat N.K. Gopinath, G. Jagadeesh, B. Basu, Shock wave-material interaction in ZrB2–SiC based ultra high temperature ceramics for hypersonic applications. J. Am. Ceram. Soc. 00, 1–14 (2019) N.K. Gopinath, G. Jagadeesh, B. Basu, Shock wave-material interaction in ZrB2–SiC based ultra high temperature ceramics for hypersonic applications. J. Am. Ceram. Soc. 00, 1–14 (2019)
28.
Zurück zum Zitat A.M. Balagurov, I.A. Bobrikov, VYu. Pomjakushin, D.V. Sheptyakov, VYu. Yushankhai, Interplay between structural and magnetic phase transitions in copper ferrite studied with high-resolution neutron diffraction. J. Magn. Magn. Mater. 374, 591–599 (2015)CrossRef A.M. Balagurov, I.A. Bobrikov, VYu. Pomjakushin, D.V. Sheptyakov, VYu. Yushankhai, Interplay between structural and magnetic phase transitions in copper ferrite studied with high-resolution neutron diffraction. J. Magn. Magn. Mater. 374, 591–599 (2015)CrossRef
29.
Zurück zum Zitat D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyu, Enhanced magnetization in cubic ferrimagnetic CuFe2O4 nanoparticles synthesized from a citrate precursor: the role of Fe2+. J. Phys. D 43, 195004 (2010)CrossRef D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyu, Enhanced magnetization in cubic ferrimagnetic CuFe2O4 nanoparticles synthesized from a citrate precursor: the role of Fe2+. J. Phys. D 43, 195004 (2010)CrossRef
30.
Zurück zum Zitat A. Sivakumar, S. Balachandar, S.A.M.B. Dhas, Measurement of “shock wave parameters” in a novel table-top shock tube using microphones. Hum. Fact. Mech. Eng. Defense Saf. 4, 3 (2020)CrossRef A. Sivakumar, S. Balachandar, S.A.M.B. Dhas, Measurement of “shock wave parameters” in a novel table-top shock tube using microphones. Hum. Fact. Mech. Eng. Defense Saf. 4, 3 (2020)CrossRef
31.
Zurück zum Zitat S. Atroshenko, A. Divakov, Y. Meshcheryakov, N. Naumova, Effect of reloading on dynamic recrystallization in shock deformed aluminum alloy. Mater. Sci. Form 794, 755–760 (2014)CrossRef S. Atroshenko, A. Divakov, Y. Meshcheryakov, N. Naumova, Effect of reloading on dynamic recrystallization in shock deformed aluminum alloy. Mater. Sci. Form 794, 755–760 (2014)CrossRef
32.
Zurück zum Zitat A. Sivakumar, A. Rita, S.S.J. Dhas, S.A.M.B. Dhas, Tuning of surface plasmon resonance of silver nano particles by shock waves for plasmonic device applications. Opt. Laser. Technol. 128, 106235 (2020)CrossRef A. Sivakumar, A. Rita, S.S.J. Dhas, S.A.M.B. Dhas, Tuning of surface plasmon resonance of silver nano particles by shock waves for plasmonic device applications. Opt. Laser. Technol. 128, 106235 (2020)CrossRef
33.
Zurück zum Zitat S. Park, J.H. Baek, L. Zhang, J.M. Lee, K.H. Stone, I.S. Cho, J. Guo, H.S. Jung, X. Zheng, Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. ACS Sustain. Chem. Eng. 7, 5867–5874 (2019)CrossRef S. Park, J.H. Baek, L. Zhang, J.M. Lee, K.H. Stone, I.S. Cho, J. Guo, H.S. Jung, X. Zheng, Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. ACS Sustain. Chem. Eng. 7, 5867–5874 (2019)CrossRef
34.
Zurück zum Zitat G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101 (1998)CrossRef G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101 (1998)CrossRef
35.
Zurück zum Zitat B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis. Dalton Trans. 43, 7930 (2014)CrossRef B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis. Dalton Trans. 43, 7930 (2014)CrossRef
36.
Zurück zum Zitat C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)CrossRef C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)CrossRef
37.
Zurück zum Zitat C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhang, Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5, 3126–3134 (2018)CrossRef C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhang, Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5, 3126–3134 (2018)CrossRef
Metadaten
Titel
Assessment of crystallographic and magnetic phase stabilities of cubic copper ferrite at shocked conditions
verfasst von
A. Sivakumar
S. Sahaya Jude Dhas
Abdulrahman I. Almansour
Raju Suresh Kumar
Natarajan Arumugam
S. A. Martin Britto Dhas
Publikationsdatum
26.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05910-w

Weitere Artikel der Ausgabe 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Zur Ausgabe

Neuer Inhalt