Skip to main content
Erschienen in: Meccanica 13/2018

13.08.2018

Assessment of shunted piezoelectric devices for simultaneous noise and vibration reduction: comparison of passive, active and hybrid networks

verfasst von: Mehran Shahraeeni

Erschienen in: Meccanica | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Structural vibration and noise control of a cavity-backed three-layered smart piezo-coupled rectangular panel system under harmonic or transient loads is achieved by using purely active, passive, and hybrid active/passive piezoelectric shunt networks. Problem formulation is based on the classical lamination plate theory, Maxwell’s equation for piezoelectric materials, linear circuit theory, and wave equation for the enclosed acoustic domain. The orthogonal mode expansions along with the modal coupling theory are employed to obtain the coupled differential equations of the electro-mechanical-acoustic system, which are then put into the convenient state-space form, and subsequently solved numerically in both frequency and time domains. A triple-mode hybrid RLC shunt circuit, in series with an external active voltage source and connected to a single electroded piezoelectric segment, is tuned to the dominant resonance frequencies of the composite structure. The linear quadratic optimal control (LQR) theory is adopted for obtaining the active control gains. The frequency and time domain performances of the passive, active and hybrid multi-modal piezoelectric systems are calculated and discussed in terms of sensor output voltage, local sound pressure, and control effort. It is found that the hybrid control methodology with properly tuned circuit parameters can be an excellent candidate for simultaneous vibration and structure-borne noise control of the cavity-coupled smart panel with decreased control effort. Also, the active control strategy integrated in the hybrid control system is demonstrated to enhance the overall system damping characteristics and improve the control authority at frequencies where the passive shunt network performs weakly. Limiting cases are considered and correctness of the mathematical model is verified by using a commercial finite element software as well as by comparisons with the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jones DI (2001) Handbook of viscoelastic vibration damping. Wiley, New York Jones DI (2001) Handbook of viscoelastic vibration damping. Wiley, New York
2.
Zurück zum Zitat Allard J, Atalla N (2009) Propagation of sound in porous media: modelling sound absorbing materials 2e. Wiley, New YorkCrossRef Allard J, Atalla N (2009) Propagation of sound in porous media: modelling sound absorbing materials 2e. Wiley, New YorkCrossRef
3.
Zurück zum Zitat Hansen C, Snyder S, Qiu X, Brooks L, Moreau D (2012) Active control of noise and vibration. CRC Press, Boca Raton Hansen C, Snyder S, Qiu X, Brooks L, Moreau D (2012) Active control of noise and vibration. CRC Press, Boca Raton
4.
Zurück zum Zitat Moheimani SR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, BerlinMATH Moheimani SR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, BerlinMATH
5.
7.
Zurück zum Zitat Ro J, Baz A (1999) Control of sound radiation from a plate into an acoustic cavity using active constrained layer damping. Smart Mater Struct 8:292ADSCrossRef Ro J, Baz A (1999) Control of sound radiation from a plate into an acoustic cavity using active constrained layer damping. Smart Mater Struct 8:292ADSCrossRef
8.
Zurück zum Zitat Azzouz MS, Ro J (2002) Control of sound radiation of an active constrained layer damping plate/cavity system using the structural intensity approach. J Vib Control 8:903–918MATH Azzouz MS, Ro J (2002) Control of sound radiation of an active constrained layer damping plate/cavity system using the structural intensity approach. J Vib Control 8:903–918MATH
9.
Zurück zum Zitat Leroy P, Atalla N, Berry A, Herzog P (2009) Three dimensional finite element modeling of smart foam. J Acoust Soc Am 126:2873–2885ADSCrossRef Leroy P, Atalla N, Berry A, Herzog P (2009) Three dimensional finite element modeling of smart foam. J Acoust Soc Am 126:2873–2885ADSCrossRef
10.
Zurück zum Zitat Crassidis JL, Baz A, Wereley N (2000) H∞ control of active constrained layer damping. J Vib Control 6:113–136CrossRef Crassidis JL, Baz A, Wereley N (2000) H∞ control of active constrained layer damping. J Vib Control 6:113–136CrossRef
11.
Zurück zum Zitat Trindade MA, Benjeddou A (2002) Hybrid active–passive damping treatments using viscoelastic and piezoelectric materials: review and assessment. J Vib Control 8:699–745MATH Trindade MA, Benjeddou A (2002) Hybrid active–passive damping treatments using viscoelastic and piezoelectric materials: review and assessment. J Vib Control 8:699–745MATH
12.
Zurück zum Zitat Forward RL (1979) Electronic damping of vibrations in optical structures. Appl Opt 18:690–697ADSCrossRef Forward RL (1979) Electronic damping of vibrations in optical structures. Appl Opt 18:690–697ADSCrossRef
13.
Zurück zum Zitat Hagood NW, von Flotow A (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146:243–268ADSCrossRef Hagood NW, von Flotow A (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146:243–268ADSCrossRef
14.
Zurück zum Zitat Behrens S, Fleming A, Moheimani S (2003) A broadband controller for shunt piezoelectric damping of structural vibration. Smart Mater Struct 12:18–28ADSCrossRef Behrens S, Fleming A, Moheimani S (2003) A broadband controller for shunt piezoelectric damping of structural vibration. Smart Mater Struct 12:18–28ADSCrossRef
15.
Zurück zum Zitat Neubauer M, Wallaschek J (2013) Vibration damping with shunted piezoceramics: fundamentals and technical applications. Mech Syst Signal Process 36:36–52ADSCrossRef Neubauer M, Wallaschek J (2013) Vibration damping with shunted piezoceramics: fundamentals and technical applications. Mech Syst Signal Process 36:36–52ADSCrossRef
16.
Zurück zum Zitat Yu-Yin C, Dejan V, François C, Chih-Kung L, Wen-Jong W (2013) Self-powered semi-passive piezoelectric structural damping based on zero-velocity crossing detection. Smart Mater Struct 22:025029ADSCrossRef Yu-Yin C, Dejan V, François C, Chih-Kung L, Wen-Jong W (2013) Self-powered semi-passive piezoelectric structural damping based on zero-velocity crossing detection. Smart Mater Struct 22:025029ADSCrossRef
17.
Zurück zum Zitat Hollkamp JJ (1994) Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J Intell Mater Syst Struct 5:49–57CrossRef Hollkamp JJ (1994) Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J Intell Mater Syst Struct 5:49–57CrossRef
18.
Zurück zum Zitat Niederberger D, Fleming A, Moheimani SR, Morari M (2004) Adaptive multi-mode resonant piezoelectric shunt damping. Smart Mater Struct 13:1025ADSCrossRef Niederberger D, Fleming A, Moheimani SR, Morari M (2004) Adaptive multi-mode resonant piezoelectric shunt damping. Smart Mater Struct 13:1025ADSCrossRef
19.
Zurück zum Zitat Agnes GS (1995) Development of a modal model for simultaneous active and passive piezoelectric vibration suppression. J Intell Mater Syst Struct 6:482–487CrossRef Agnes GS (1995) Development of a modal model for simultaneous active and passive piezoelectric vibration suppression. J Intell Mater Syst Struct 6:482–487CrossRef
20.
Zurück zum Zitat Tsai M, Wang K (1999) On the structural damping characteristics of active piezoelectric actuators with passive shunt. J Sound Vib 221:1–22ADSCrossRef Tsai M, Wang K (1999) On the structural damping characteristics of active piezoelectric actuators with passive shunt. J Sound Vib 221:1–22ADSCrossRef
21.
Zurück zum Zitat Morgan R, Wang K (2002) An active-passive piezoelectric absorber for structural vibration control under harmonic excitations with time-varying frequency, part 1: algorithm development and analysis. J Vib Acoust 124:77–83CrossRef Morgan R, Wang K (2002) An active-passive piezoelectric absorber for structural vibration control under harmonic excitations with time-varying frequency, part 1: algorithm development and analysis. J Vib Acoust 124:77–83CrossRef
22.
Zurück zum Zitat Adachi K, Awakura Y, Iwatsubo T (2004) Hybrid piezoelectric damping for structural vibration suppression. J Intell Mater Syst Struct 15:795–801CrossRef Adachi K, Awakura Y, Iwatsubo T (2004) Hybrid piezoelectric damping for structural vibration suppression. J Intell Mater Syst Struct 15:795–801CrossRef
23.
Zurück zum Zitat De Godoy TC, Trindade MA (2011) Modeling and analysis of laminate composite plates with embedded active–passive piezoelectric networks. J Sound Vib 330:194–216ADSCrossRef De Godoy TC, Trindade MA (2011) Modeling and analysis of laminate composite plates with embedded active–passive piezoelectric networks. J Sound Vib 330:194–216ADSCrossRef
24.
Zurück zum Zitat Tang J, Wang K (2001) Active–passive hybrid piezoelectric networks for vibration control: comparisons and improvement. Smart Mater Struct 10:794ADSCrossRef Tang J, Wang K (2001) Active–passive hybrid piezoelectric networks for vibration control: comparisons and improvement. Smart Mater Struct 10:794ADSCrossRef
25.
Zurück zum Zitat Poh S, Baz A, Balachandran B (1996) Experimental adaptive control of sound radiation from a panel into an acoustic cavity using active constrained layer damping. Smart Mater Struct 5:649ADSCrossRef Poh S, Baz A, Balachandran B (1996) Experimental adaptive control of sound radiation from a panel into an acoustic cavity using active constrained layer damping. Smart Mater Struct 5:649ADSCrossRef
26.
Zurück zum Zitat Veeramani S, Wereley NM (1996) Hybrid passive/active damping for robust multivariable acoustic control in composite plates. In: Symposium on smart structures and materials, international society for optics and photonics, pp 374–387 Veeramani S, Wereley NM (1996) Hybrid passive/active damping for robust multivariable acoustic control in composite plates. In: Symposium on smart structures and materials, international society for optics and photonics, pp 374–387
27.
Zurück zum Zitat Shields W, Ro J, Baz A (1998) Control of sound radiation from a plate into an acoustic cavity using active piezoelectric-damping composites. Smart Mater Struct 7:1ADSCrossRef Shields W, Ro J, Baz A (1998) Control of sound radiation from a plate into an acoustic cavity using active piezoelectric-damping composites. Smart Mater Struct 7:1ADSCrossRef
28.
Zurück zum Zitat Gopinathan SV, Varadan VV, Varadan VK (2000) Finite element/boundary element simulation of interior noise control using active–passive control technique. In: SPIE’s 7th annual international symposium on smart structures and materials, international society for optics and photonics, pp 22–32 Gopinathan SV, Varadan VV, Varadan VK (2000) Finite element/boundary element simulation of interior noise control using active–passive control technique. In: SPIE’s 7th annual international symposium on smart structures and materials, international society for optics and photonics, pp 22–32
29.
Zurück zum Zitat Ahmadian M, Jeric KM (2001) On the application of shunted piezoceramics for increasing acoustic transmission loss in structures. J Sound Vib 243:347–359ADSCrossRef Ahmadian M, Jeric KM (2001) On the application of shunted piezoceramics for increasing acoustic transmission loss in structures. J Sound Vib 243:347–359ADSCrossRef
30.
Zurück zum Zitat Kim J, Lee J-K (2002) Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material. J Acoust Soc Am 112:990–998ADSCrossRef Kim J, Lee J-K (2002) Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material. J Acoust Soc Am 112:990–998ADSCrossRef
31.
Zurück zum Zitat Mokrý P, Fukada E, Yamamoto K (2003) Sound absorbing system as an application of the active elasticity control technique. J Appl Phys 94:7356–7362ADSCrossRef Mokrý P, Fukada E, Yamamoto K (2003) Sound absorbing system as an application of the active elasticity control technique. J Appl Phys 94:7356–7362ADSCrossRef
32.
Zurück zum Zitat Ray MC, Reddy J (2004) Performance of piezoelectric fiber-reinforced composites for active structural-acoustic control of laminated composite plates. IEEE Trans Ultrason Ferroelectr Freq Control 51:1477–1490CrossRef Ray MC, Reddy J (2004) Performance of piezoelectric fiber-reinforced composites for active structural-acoustic control of laminated composite plates. IEEE Trans Ultrason Ferroelectr Freq Control 51:1477–1490CrossRef
33.
Zurück zum Zitat Kim J, Kim J-H (2004) Multimode shunt damping of piezoelectric smart panel for noise reduction. J Acoust Soc Am 116:942–948ADSCrossRef Kim J, Kim J-H (2004) Multimode shunt damping of piezoelectric smart panel for noise reduction. J Acoust Soc Am 116:942–948ADSCrossRef
34.
Zurück zum Zitat Al-Bassyiouni M, Balachandran B (2006) Control of enclosed sound fields using zero spillover schemes. J Sound Vib 292:645–660ADSCrossRef Al-Bassyiouni M, Balachandran B (2006) Control of enclosed sound fields using zero spillover schemes. J Sound Vib 292:645–660ADSCrossRef
35.
Zurück zum Zitat Kim J, Jung Y-C (2006) Broadband noise reduction of piezoelectric smart panel featuring negative-capacitive-converter shunt circuit. J Acoust Soc Am 120:2017–2025ADSCrossRef Kim J, Jung Y-C (2006) Broadband noise reduction of piezoelectric smart panel featuring negative-capacitive-converter shunt circuit. J Acoust Soc Am 120:2017–2025ADSCrossRef
36.
Zurück zum Zitat Nguyen C, Pietrzko S (2007) Vibroacoustic FE analysis of an adaptive plate with PZT actuator/sensor pairs connected to a multiple-mode, electric shunt system. Finite Elem Anal Des 43:1120–1134CrossRef Nguyen C, Pietrzko S (2007) Vibroacoustic FE analysis of an adaptive plate with PZT actuator/sensor pairs connected to a multiple-mode, electric shunt system. Finite Elem Anal Des 43:1120–1134CrossRef
37.
Zurück zum Zitat Al-Bassyiouni M (2008) Structural acoustic modelling of three dimensional enclosed sound fields with active/passive piezoelectric networks. Int J Veh Noise Vib 4:1–16CrossRef Al-Bassyiouni M (2008) Structural acoustic modelling of three dimensional enclosed sound fields with active/passive piezoelectric networks. Int J Veh Noise Vib 4:1–16CrossRef
38.
Zurück zum Zitat Guyomar D, Richard T, Richard C (2007) Sound wave transmission reduction through a plate using piezoelectric synchronized switch damping technique. J Intell Mater Syst Struct 19:791–803CrossRef Guyomar D, Richard T, Richard C (2007) Sound wave transmission reduction through a plate using piezoelectric synchronized switch damping technique. J Intell Mater Syst Struct 19:791–803CrossRef
39.
Zurück zum Zitat Jeon J-Y (2009) Passive acoustic radiation control for a vibrating panel with piezoelectric shunt damping circuit using particle swarm optimization algorithm. J Mech Sci Technol 23:1446–1455CrossRef Jeon J-Y (2009) Passive acoustic radiation control for a vibrating panel with piezoelectric shunt damping circuit using particle swarm optimization algorithm. J Mech Sci Technol 23:1446–1455CrossRef
40.
Zurück zum Zitat Ray M, Faye A, Patra S, Bhattacharyya R (2009) Theoretical and experimental investigations on the active structural–acoustic control of a thin plate using a vertically reinforced 1–3 piezoelectric composite. Smart Mater Struct 18:015012ADSCrossRef Ray M, Faye A, Patra S, Bhattacharyya R (2009) Theoretical and experimental investigations on the active structural–acoustic control of a thin plate using a vertically reinforced 1–3 piezoelectric composite. Smart Mater Struct 18:015012ADSCrossRef
41.
Zurück zum Zitat Dupont J-B, Galland M-A (2009) Active absorption to reduce the noise transmitted out of an enclosure. Appl Acoust 70:142–152CrossRef Dupont J-B, Galland M-A (2009) Active absorption to reduce the noise transmitted out of an enclosure. Appl Acoust 70:142–152CrossRef
42.
Zurück zum Zitat Casadei F, Ruzzene M, Dozio L, Cunefare K (2010) Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates. Smart Mater Struct 19:015002ADSCrossRef Casadei F, Ruzzene M, Dozio L, Cunefare K (2010) Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates. Smart Mater Struct 19:015002ADSCrossRef
43.
Zurück zum Zitat Larbi W, Deü J-F, Ciminello M, Ohayon R (2010) Structural-acoustic vibration reduction using switched shunt piezoelectric patches: a finite element analysis. J Vib Acoust 132:051006CrossRef Larbi W, Deü J-F, Ciminello M, Ohayon R (2010) Structural-acoustic vibration reduction using switched shunt piezoelectric patches: a finite element analysis. J Vib Acoust 132:051006CrossRef
44.
Zurück zum Zitat Pietrzko S, Mao Q (2011) Control of structural sound radiation and vibration using shunt piezoelectric materials. J Syst Des Dyn 5:752–764 Pietrzko S, Mao Q (2011) Control of structural sound radiation and vibration using shunt piezoelectric materials. J Syst Des Dyn 5:752–764
45.
Zurück zum Zitat Larbi W, Deü J-F, Ohayon R (2012) Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid. Compos Struct 94:501–509CrossRef Larbi W, Deü J-F, Ohayon R (2012) Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid. Compos Struct 94:501–509CrossRef
46.
Zurück zum Zitat Larbi W, Deü J, Ohayon R (2012) A finite element-boundary element approach for sound and vibration reduction using piezoelectric shunt damping. In: Proceedings of the eleventh international conference on computational structures technology Larbi W, Deü J, Ohayon R (2012) A finite element-boundary element approach for sound and vibration reduction using piezoelectric shunt damping. In: Proceedings of the eleventh international conference on computational structures technology
47.
Zurück zum Zitat Nakazawa T, Yamada K, Matsuhisa H, Sawada K, Utsuno H (2012) Low-frequency noise reduction using a piezoelectric sound absorbing panel using LR circuit and applied voltage. In: ASME 2012 5th annual dynamic systems and control conference joint with the JSME 2012 11th motion and vibration conference. American Society of Mechanical Engineers, pp 357–366 Nakazawa T, Yamada K, Matsuhisa H, Sawada K, Utsuno H (2012) Low-frequency noise reduction using a piezoelectric sound absorbing panel using LR circuit and applied voltage. In: ASME 2012 5th annual dynamic systems and control conference joint with the JSME 2012 11th motion and vibration conference. American Society of Mechanical Engineers, pp 357–366
48.
Zurück zum Zitat Larbi W, Deü J-F, Ohayon R, Sampaio R (2014) Coupled FEM/BEM for control of noise radiation and sound transmission using piezoelectric shunt damping. Appl Acoust 86:146–153CrossRef Larbi W, Deü J-F, Ohayon R, Sampaio R (2014) Coupled FEM/BEM for control of noise radiation and sound transmission using piezoelectric shunt damping. Appl Acoust 86:146–153CrossRef
49.
Zurück zum Zitat Deü J-F, Larbi W, Ohayon R, Sampaio R (2014) Piezoelectric shunt vibration damping of structural–acoustic systems: finite element formulation and reduced-order model. J Vib Acoust 136:031007CrossRef Deü J-F, Larbi W, Ohayon R, Sampaio R (2014) Piezoelectric shunt vibration damping of structural–acoustic systems: finite element formulation and reduced-order model. J Vib Acoust 136:031007CrossRef
50.
Zurück zum Zitat Zhao Y (2010) Vibration suppression of a quadrilateral plate using hybrid piezoelectric circuits. J Vib Control 16:701–720CrossRefMATH Zhao Y (2010) Vibration suppression of a quadrilateral plate using hybrid piezoelectric circuits. J Vib Control 16:701–720CrossRefMATH
51.
Zurück zum Zitat Silva T, De Marqui C Jr (2013) Vibration suppression of a plate-like wing under atmospheric turbulence using passive, active and hybrid piezoelectric circuits. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference Silva T, De Marqui C Jr (2013) Vibration suppression of a plate-like wing under atmospheric turbulence using passive, active and hybrid piezoelectric circuits. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference
52.
Zurück zum Zitat Testa C, Bernardini G, Gennaretti M (2011) Aircraft cabin tonal noise alleviation through fuselage skin embedded piezoelectric actuators. J Vib Acoust 133:051009CrossRef Testa C, Bernardini G, Gennaretti M (2011) Aircraft cabin tonal noise alleviation through fuselage skin embedded piezoelectric actuators. J Vib Acoust 133:051009CrossRef
53.
Zurück zum Zitat Rocha TL, Dias M (2015) Improved sound transmission loss in an automotive component using piezoceramic patches and dissipative shunt circuits. J Intell Mater Syst Struct 26:476–786CrossRef Rocha TL, Dias M (2015) Improved sound transmission loss in an automotive component using piezoceramic patches and dissipative shunt circuits. J Intell Mater Syst Struct 26:476–786CrossRef
54.
Zurück zum Zitat Carrera E, Brischetto S, Nali P (2011) Plates and shells for smart structures: classical and advanced theories for modeling and analysis. Wiley, New YorkCrossRefMATH Carrera E, Brischetto S, Nali P (2011) Plates and shells for smart structures: classical and advanced theories for modeling and analysis. Wiley, New YorkCrossRefMATH
55.
Zurück zum Zitat Pietrzakowski M (2008) Piezoelectric control of composite plate vibration: effect of electric potential distribution. Comput Struct 86:948–954CrossRef Pietrzakowski M (2008) Piezoelectric control of composite plate vibration: effect of electric potential distribution. Comput Struct 86:948–954CrossRef
56.
Zurück zum Zitat Quek S, Wang Q (2000) On dispersion relations in piezoelectric coupled-plate structures. Smart Mater Struct 9:859ADSCrossRef Quek S, Wang Q (2000) On dispersion relations in piezoelectric coupled-plate structures. Smart Mater Struct 9:859ADSCrossRef
57.
Zurück zum Zitat Farsangi MA, Saidi A, Batra R (2013) Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J Sound Vib 332:5981–5998ADSCrossRef Farsangi MA, Saidi A, Batra R (2013) Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J Sound Vib 332:5981–5998ADSCrossRef
58.
Zurück zum Zitat Cao X, Shi L, Zhang X, Jiang G (2013) Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer. Smart Mater Struct 22:065003ADSCrossRef Cao X, Shi L, Zhang X, Jiang G (2013) Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer. Smart Mater Struct 22:065003ADSCrossRef
59.
Zurück zum Zitat Wang Q, Quek S, Sun C, Liu X (2001) Analysis of piezoelectric coupled circular plate. Smart Mater Struct 10:229ADSCrossRef Wang Q, Quek S, Sun C, Liu X (2001) Analysis of piezoelectric coupled circular plate. Smart Mater Struct 10:229ADSCrossRef
60.
Zurück zum Zitat Rao SS (2007) Vibration of continuous systems. Wiley, New York Rao SS (2007) Vibration of continuous systems. Wiley, New York
61.
Zurück zum Zitat Shahraeeni M, Shakeri R, Hasheminejad SM (2015) An analytical solution for free and forced vibration of a piezoelectric laminated plate coupled with an acoustic enclosure. Comput Math Appl 69:1329–1341MathSciNetCrossRef Shahraeeni M, Shakeri R, Hasheminejad SM (2015) An analytical solution for free and forced vibration of a piezoelectric laminated plate coupled with an acoustic enclosure. Comput Math Appl 69:1329–1341MathSciNetCrossRef
62.
Zurück zum Zitat Da Rocha J, Suleman A, Lau F (2009) Prediction of flow-induced noise in transport vehicles: development and validation of a coupled structural-acoustic analytical framework. Can Acoust 37:13–29 Da Rocha J, Suleman A, Lau F (2009) Prediction of flow-induced noise in transport vehicles: development and validation of a coupled structural-acoustic analytical framework. Can Acoust 37:13–29
63.
Zurück zum Zitat Fahy FJ, Gardonio P (2007) Sound and structural vibration: radiation, transmission and response. Academic Press, London Fahy FJ, Gardonio P (2007) Sound and structural vibration: radiation, transmission and response. Academic Press, London
64.
Zurück zum Zitat Kuttruff H (2009) Room acoustics. CRC Press, Boca Raton Kuttruff H (2009) Room acoustics. CRC Press, Boca Raton
65.
Zurück zum Zitat Aridogan U, Basdogan I, Erturk A (2014) Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate. Smart Mater Struct 23:045039ADSCrossRef Aridogan U, Basdogan I, Erturk A (2014) Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate. Smart Mater Struct 23:045039ADSCrossRef
66.
Zurück zum Zitat Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11:246–257CrossRef Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11:246–257CrossRef
67.
Zurück zum Zitat Lee CK (1990) Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. J Acoust Soc Am 87:1144–1158ADSCrossRef Lee CK (1990) Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. J Acoust Soc Am 87:1144–1158ADSCrossRef
68.
Zurück zum Zitat De Marneffe B, Preumont A (2008) Vibration damping with negative capacitance shunts: theory and experiment. Smart Mater Struct 17:035015ADSCrossRef De Marneffe B, Preumont A (2008) Vibration damping with negative capacitance shunts: theory and experiment. Smart Mater Struct 17:035015ADSCrossRef
69.
Zurück zum Zitat Nováková K (2013) Control of static and dynamic mechanical response of piezoelectric composite shells: applications to acoustics and adaptive optics. Dissertation thesis, Technical University of Liberec, Liberec Nováková K (2013) Control of static and dynamic mechanical response of piezoelectric composite shells: applications to acoustics and adaptive optics. Dissertation thesis, Technical University of Liberec, Liberec
70.
Zurück zum Zitat Behrens S, Moheimani SR, Fleming A (2003) Multiple mode current flowing passive piezoelectric shunt controller. J Sound Vib 266:929–942ADSCrossRef Behrens S, Moheimani SR, Fleming A (2003) Multiple mode current flowing passive piezoelectric shunt controller. J Sound Vib 266:929–942ADSCrossRef
71.
Zurück zum Zitat Datta BN (2004) Numerical methods for linear control systems: design and analysis. Academic Press, LondonMATH Datta BN (2004) Numerical methods for linear control systems: design and analysis. Academic Press, LondonMATH
72.
Zurück zum Zitat Kim S, Brennan M (1999) A compact matrix formulation using the impedance and mobility approach for the analysis of structural–acoustic systems. J Sound Vib 223:97–113ADSCrossRef Kim S, Brennan M (1999) A compact matrix formulation using the impedance and mobility approach for the analysis of structural–acoustic systems. J Sound Vib 223:97–113ADSCrossRef
73.
Zurück zum Zitat Koshigoe S, Ellis GK (1994) Time-domain analysis of active control of sound transmission through an elastic plate backed by a rigid rectangular cavity. In: North American conference on smart structures and materials, international society for optics and photonics, pp 321–329 Koshigoe S, Ellis GK (1994) Time-domain analysis of active control of sound transmission through an elastic plate backed by a rigid rectangular cavity. In: North American conference on smart structures and materials, international society for optics and photonics, pp 321–329
74.
Zurück zum Zitat Turner MC, Bates DG (2007) Mathematical methods for robust and nonlinear control. Book series on control systems. Springer, BerlinCrossRefMATH Turner MC, Bates DG (2007) Mathematical methods for robust and nonlinear control. Book series on control systems. Springer, BerlinCrossRefMATH
75.
Zurück zum Zitat Gupta V, Sharma M, Thakur N (2010) Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. J Intell Mater Syst Struct 21:1227–1243CrossRef Gupta V, Sharma M, Thakur N (2010) Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. J Intell Mater Syst Struct 21:1227–1243CrossRef
76.
Zurück zum Zitat Du JT, Li WL, Xu HA, Liu ZG (2012) Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges. J Acoust Soc Am 131:2799–2810ADSCrossRef Du JT, Li WL, Xu HA, Liu ZG (2012) Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges. J Acoust Soc Am 131:2799–2810ADSCrossRef
77.
Zurück zum Zitat Sou KC, de Weck OL (2005) Fast time-domain simulation for large-order linear time-invariant state space systems. Int J Numer Methods Eng 63:681–708CrossRefMATH Sou KC, de Weck OL (2005) Fast time-domain simulation for large-order linear time-invariant state space systems. Int J Numer Methods Eng 63:681–708CrossRefMATH
78.
Zurück zum Zitat Hasheminejad SM, Keshavarzpour H (2013) Active sound radiation control of a thick piezolaminated smart rectangular plate. J Sound Vib 332:4798–4816ADSCrossRef Hasheminejad SM, Keshavarzpour H (2013) Active sound radiation control of a thick piezolaminated smart rectangular plate. J Sound Vib 332:4798–4816ADSCrossRef
79.
80.
Zurück zum Zitat Wang K-W, Tang J (2009) Adaptive structural systems with piezoelectric transducer circuitry. Springer, Berlin Wang K-W, Tang J (2009) Adaptive structural systems with piezoelectric transducer circuitry. Springer, Berlin
Metadaten
Titel
Assessment of shunted piezoelectric devices for simultaneous noise and vibration reduction: comparison of passive, active and hybrid networks
verfasst von
Mehran Shahraeeni
Publikationsdatum
13.08.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 13/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0885-4

Weitere Artikel der Ausgabe 13/2018

Meccanica 13/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.