Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2015

01.10.2015

Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic–Martensitic Steel

verfasst von: J. Vanaja, Kinkar Laha

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tertiary creep deformation behavior of reduced activation ferritic–martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, \( \varepsilon = \varepsilon_{\text{o}} + \dot{\varepsilon }_{\text{m}} t + \varepsilon_3{\exp }\left[ {p\left( {t - t_{\text{t}} } \right)} \right] \), considering minimum creep rate (\( \dot{\varepsilon }_{\text{m}} \)) instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ‘p.’ The relationships between (1) tertiary parameter ‘p’ with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate \( \dot{\varepsilon }_{\text{f}} \) with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ‘p’ with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. L. Klueh, D. S. Gelles and T.A. Lechtenberg, Journal of Nuclear Materials, 141-143 (1986) 1081-1087.CrossRef R. L. Klueh, D. S. Gelles and T.A. Lechtenberg, Journal of Nuclear Materials, 141-143 (1986) 1081-1087.CrossRef
2.
Zurück zum Zitat M. Victoria, N. Baluc and P. Spätig: Nuclear Fusion, 41 (2001) 1047-1053.CrossRef M. Victoria, N. Baluc and P. Spätig: Nuclear Fusion, 41 (2001) 1047-1053.CrossRef
3.
Zurück zum Zitat F. Abe, T. Noda, H. Araki and M. Okada: J. Nucl. Sci. Tech., 31 (1994) 279-292.CrossRef F. Abe, T. Noda, H. Araki and M. Okada: J. Nucl. Sci. Tech., 31 (1994) 279-292.CrossRef
4.
Zurück zum Zitat G. Yu, N. Nita, N. Baluc; Fusion Engineering and Design 75–79 (2005) 1037–1041.CrossRef G. Yu, N. Nita, N. Baluc; Fusion Engineering and Design 75–79 (2005) 1037–1041.CrossRef
5.
Zurück zum Zitat Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, Journal of Nuclear Materials 367–370 (2007) 117–121.CrossRef Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, Journal of Nuclear Materials 367–370 (2007) 117–121.CrossRef
6.
Zurück zum Zitat A.-A.F. Tavassoli, J.-W. Rensman, M. Schirra, K. Shiba; Fusion Engineering and Design 61-62 (2002) 617-628.CrossRef A.-A.F. Tavassoli, J.-W. Rensman, M. Schirra, K. Shiba; Fusion Engineering and Design 61-62 (2002) 617-628.CrossRef
7.
Zurück zum Zitat T. Hasegawa, Y. Abe, Y. Tomita. N. Maruyama and M. Sugiyama; ISIJ International, Vol. 41 (2001), No. 8, pp. 922–929.CrossRef T. Hasegawa, Y. Abe, Y. Tomita. N. Maruyama and M. Sugiyama; ISIJ International, Vol. 41 (2001), No. 8, pp. 922–929.CrossRef
8.
Zurück zum Zitat J. Vanaja, K. Laha, R. Mythili, K.S. Chandravathi, S. Saroja and M.D. Mathew; Materials Science and Engineering A, 533 (2012) 17– 25.CrossRef J. Vanaja, K. Laha, R. Mythili, K.S. Chandravathi, S. Saroja and M.D. Mathew; Materials Science and Engineering A, 533 (2012) 17– 25.CrossRef
9.
Zurück zum Zitat F. Abe, H. Araki, and T. Noda; Met. Trans A, Vol. 22A (1991) 2225-2235.CrossRef F. Abe, H. Araki, and T. Noda; Met. Trans A, Vol. 22A (1991) 2225-2235.CrossRef
10.
Zurück zum Zitat A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, P.J. Ennis; Journal of Achievements in materials and manufacturing Engineering, Vol. 19, (2006) 43-48. A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, P.J. Ennis; Journal of Achievements in materials and manufacturing Engineering, Vol. 19, (2006) 43-48.
11.
Zurück zum Zitat P. Fernández, A.M. Lancha, J. Lapeña, R. Lindau, M. Rieth, M. Schirra, Fusion Eng. Des. 75–79 (2005) 1003–1008.CrossRef P. Fernández, A.M. Lancha, J. Lapeña, R. Lindau, M. Rieth, M. Schirra, Fusion Eng. Des. 75–79 (2005) 1003–1008.CrossRef
12.
Zurück zum Zitat E. Isaac Samuel, B.K. Choudhary, K. Bhanu Sankara Rao, and B. Raj: Pressure Vessels, and Piping: Materials and Properties, Narosa Publishing House, New Delhi, India, 2008, pp. 83–100. E. Isaac Samuel, B.K. Choudhary, K. Bhanu Sankara Rao, and B. Raj: Pressure Vessels, and Piping: Materials and Properties, Narosa Publishing House, New Delhi, India, 2008, pp. 83–100.
13.
Zurück zum Zitat P. G. McVetty, Mech. Engng 56, 149 (1934). P. G. McVetty, Mech. Engng 56, 149 (1934).
14.
Zurück zum Zitat F. Garofalo: Fundamentals of Creep and Creep Rupture in Metals. Macmillan, New York, 1965. F. Garofalo: Fundamentals of Creep and Creep Rupture in Metals. Macmillan, New York, 1965.
15.
Zurück zum Zitat G.A. Webster, A.P.D. Cox, and J.E. Dorn: Metal. Sci. J., 1969, vol. 3, pp. 221–25.CrossRef G.A. Webster, A.P.D. Cox, and J.E. Dorn: Metal. Sci. J., 1969, vol. 3, pp. 221–25.CrossRef
16.
Zurück zum Zitat P.W. Davies, W.J. Evans, K.R. Williams, and B. Wilshire: Scripta Metall., 1969, vol. 3, pp. 671–674.CrossRef P.W. Davies, W.J. Evans, K.R. Williams, and B. Wilshire: Scripta Metall., 1969, vol. 3, pp. 671–674.CrossRef
17.
Zurück zum Zitat Dobeš F., Čadek J.: Kovové Mater.19 (1981) 31. Dobeš F., Čadek J.: Kovové Mater.19 (1981) 31.
18.
Zurück zum Zitat F. Abe and S. Nakazawa: Metall. Trans. A, 1992, vol. 23A, pp. 3025–3034.CrossRef F. Abe and S. Nakazawa: Metall. Trans. A, 1992, vol. 23A, pp. 3025–3034.CrossRef
19.
Zurück zum Zitat S.G. Hong, W.B. Lee, and C.G. Park: J. Nucl. Mater., 2001, vol. 288, pp. 202–207.CrossRef S.G. Hong, W.B. Lee, and C.G. Park: J. Nucl. Mater., 2001, vol. 288, pp. 202–207.CrossRef
20.
Zurück zum Zitat J. Cermak, J. Kucera, B. Million, and J. Krumpos: Kov. Mater., 1980, vol. 18, pp. 537–547. J. Cermak, J. Kucera, B. Million, and J. Krumpos: Kov. Mater., 1980, vol. 18, pp. 537–547.
21.
Zurück zum Zitat NIMS creep data sheet, Atlas of creep deformation property No. D-1, 2007. NIMS creep data sheet, Atlas of creep deformation property No. D-1, 2007.
22.
Zurück zum Zitat K. Kimura, K. Sawada, and H. Kushima: Proc. 3rd Symp. Heat Res. Steels Alloys High Effic, USC Power Plants, Japan, 2009. K. Kimura, K. Sawada, and H. Kushima: Proc. 3rd Symp. Heat Res. Steels Alloys High Effic, USC Power Plants, Japan, 2009.
23.
24.
Zurück zum Zitat F.C. Monkman, N.J. Grant; Proc. Am. Soc. Test. Mater. 56 (1956) 593. F.C. Monkman, N.J. Grant; Proc. Am. Soc. Test. Mater. 56 (1956) 593.
25.
Zurück zum Zitat N.J. Grant and A.W. Mullendore: Deformation Fracture at Elevated Temperatures, MIT Press, Cambridge, Mass, 1965. N.J. Grant and A.W. Mullendore: Deformation Fracture at Elevated Temperatures, MIT Press, Cambridge, Mass, 1965.
26.
Zurück zum Zitat P. W. Davies and K. R. Williams; Acta Metall., Vol. 17, (1969) 897-903.CrossRef P. W. Davies and K. R. Williams; Acta Metall., Vol. 17, (1969) 897-903.CrossRef
27.
Zurück zum Zitat J. Vanaja, K Laha, and M.D. Mathew; Metallurgical and Materials Transactions A, Vol. 45A (2014) 5076-5084.CrossRef J. Vanaja, K Laha, and M.D. Mathew; Metallurgical and Materials Transactions A, Vol. 45A (2014) 5076-5084.CrossRef
28.
Zurück zum Zitat W.J. Evans and B. Wilshire: Metall. Trans., 1970, vol. 1, pp. 2133–2139.CrossRef W.J. Evans and B. Wilshire: Metall. Trans., 1970, vol. 1, pp. 2133–2139.CrossRef
29.
Zurück zum Zitat C. Phaniraj, M. Nandagopal, S.L. Mannan, and P. Rodriguez and B. P. Kashyap: Acta Mater., 1996, vol. 44 (10), pp. 4059-4069.CrossRef C. Phaniraj, M. Nandagopal, S.L. Mannan, and P. Rodriguez and B. P. Kashyap: Acta Mater., 1996, vol. 44 (10), pp. 4059-4069.CrossRef
30.
Zurück zum Zitat B.K. Choudhary, C. Phaniraj, K. Bhanu Sankara Rao, and S.L. Mannan: ISIJ Int., 2001, vol. 41, pp. S73–S80.CrossRef B.K. Choudhary, C. Phaniraj, K. Bhanu Sankara Rao, and S.L. Mannan: ISIJ Int., 2001, vol. 41, pp. S73–S80.CrossRef
31.
Zurück zum Zitat M. Maldini and V. Lupinc; Scripta Metall. Mater., 1995, vol. 32, No. 3, pp. 337-342.CrossRef M. Maldini and V. Lupinc; Scripta Metall. Mater., 1995, vol. 32, No. 3, pp. 337-342.CrossRef
32.
33.
Zurück zum Zitat M.F. Ashby, B.F. Dyson: Advances in Fracture Research, Pergamon Press, Oxford, 1984, vol. 1, pp. 3–30. M.F. Ashby, B.F. Dyson: Advances in Fracture Research, Pergamon Press, Oxford, 1984, vol. 1, pp. 3–30.
34.
35.
Zurück zum Zitat S. Goyal, K. Laha, S. Panneer Selvi and M. D. Mathew; Materials at High Temperatures, 2014, vol. 31, no.3, pp. 211-220.CrossRef S. Goyal, K. Laha, S. Panneer Selvi and M. D. Mathew; Materials at High Temperatures, 2014, vol. 31, no.3, pp. 211-220.CrossRef
36.
Zurück zum Zitat L. Tan, Y. Yang, J.T. Busby; Journal of Nuclear Materials 442 (2013) S13–S17.CrossRef L. Tan, Y. Yang, J.T. Busby; Journal of Nuclear Materials 442 (2013) S13–S17.CrossRef
37.
Zurück zum Zitat L. Tan, J.T. Busby, P.J. Maziasz, Y. Yamamoto; Journal of Nuclear Materials 441 (2013) 713–717.CrossRef L. Tan, J.T. Busby, P.J. Maziasz, Y. Yamamoto; Journal of Nuclear Materials 441 (2013) 713–717.CrossRef
Metadaten
Titel
Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic–Martensitic Steel
verfasst von
J. Vanaja
Kinkar Laha
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2015
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-3075-1

Weitere Artikel der Ausgabe 10/2015

Metallurgical and Materials Transactions A 10/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.