Skip to main content

2015 | OriginalPaper | Buchkapitel

Atom-Precise Metal Nanoclusters

verfasst von : Anu George, Sukhendu Mandal

Erschienen in: Applied Spectroscopy and the Science of Nanomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A nanocrystal is a crystallite with size greater than about 2 nm. Nanoclusters are non-crystalline nanoparticles that are typically small and composed of a specific number of metal atoms in the core, which are protected by a shell of ligands. Optical properties of large metal nanoparticles in external electromagnetic fields are a function of their size, free-electron density and dielectric function relative that of the surrounding medium. The ultra-small size of nanoclusters allows them to exhibit distinct quantum confinement effects, which in turn results in their discrete electronic structure and molecular-like properties, such as HOMO-LUMO electronic transitions, enhanced photoluminescence, and intrinsic magnetism, to name a few of the characteristics. Metal nanoclusters play an important bridging role between nanochemistry and molecular chemistry. A basic understanding of the structure, electronic and optical properties, as the materials evolve from the atomic state to nanoclusters to fcc-structured nanocrystals, constitutes a major evolution across length scales, and leads to fundamental insights into the correlation between the structure and key characteristics of metal nanoclusters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRef Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRef
2.
Zurück zum Zitat Ashcroft NW, Mermin ND (1976) Solid state physics. Holt/Rinehart & Winston, New York Ashcroft NW, Mermin ND (1976) Solid state physics. Holt/Rinehart & Winston, New York
3.
Zurück zum Zitat Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840CrossRef Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840CrossRef
4.
Zurück zum Zitat Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 17:6584 (and references therein) Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 17:6584 (and references therein)
5.
Zurück zum Zitat Haberland H (1994) Clusters of atoms and molecules: Theory experiment, and clusters of atoms. Springer, Berlin Haberland H (1994) Clusters of atoms and molecules: Theory experiment, and clusters of atoms. Springer, Berlin
6.
Zurück zum Zitat Kubo R (1962) Electronic properties of metallic fine particles. J Phys Soc Jpn 17:975CrossRef Kubo R (1962) Electronic properties of metallic fine particles. J Phys Soc Jpn 17:975CrossRef
7.
Zurück zum Zitat Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643CrossRef Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643CrossRef
8.
Zurück zum Zitat Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124:7499CrossRef Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124:7499CrossRef
9.
Zurück zum Zitat Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811CrossRef Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811CrossRef
10.
Zurück zum Zitat Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H et al (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573CrossRef Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H et al (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573CrossRef
11.
Zurück zum Zitat Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106:3410CrossRef Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106:3410CrossRef
12.
Zurück zum Zitat Felix C, Sieber C, Harbich W, Buttet J, Rabin I et al (2001) Ag8 fluorescence in Argon. Phys Rev Lett 86:2992CrossRef Felix C, Sieber C, Harbich W, Buttet J, Rabin I et al (2001) Ag8 fluorescence in Argon. Phys Rev Lett 86:2992CrossRef
13.
Zurück zum Zitat Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409CrossRef Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409CrossRef
14.
Zurück zum Zitat Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem Commun 7:801–802 Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem Commun 7:801–802
15.
Zurück zum Zitat Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J Am Chem Soc 129:6706–6707CrossRef Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J Am Chem Soc 129:6706–6707CrossRef
16.
Zurück zum Zitat Castro EG, Salvatierra RV, Schreiner WH, Oliveira MM, Zarbin AJG (2010) Dodecanethiol-stabilized platinum nanoparticles obtained by a two-phase method: synthesis, characterization, mechanism of formation, and electrocatalytic properties. Chem Mater 22:360–370CrossRef Castro EG, Salvatierra RV, Schreiner WH, Oliveira MM, Zarbin AJG (2010) Dodecanethiol-stabilized platinum nanoparticles obtained by a two-phase method: synthesis, characterization, mechanism of formation, and electrocatalytic properties. Chem Mater 22:360–370CrossRef
17.
Zurück zum Zitat Wu ZK, Lanni E, Chen WQ, Bier ME, Ly D, Jin RC (2009) High yield, large scale synthesis of thiolate-protected Ag7 clusters. J Am Chem Soc 131:16672–16674CrossRef Wu ZK, Lanni E, Chen WQ, Bier ME, Ly D, Jin RC (2009) High yield, large scale synthesis of thiolate-protected Ag7 clusters. J Am Chem Soc 131:16672–16674CrossRef
18.
Zurück zum Zitat Ang TP, Wee TSA, Chin WS (2004) Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. J Phys Chem B 108:11001–11010CrossRef Ang TP, Wee TSA, Chin WS (2004) Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. J Phys Chem B 108:11001–11010CrossRef
19.
Zurück zum Zitat Zhao MQ, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878CrossRef Zhao MQ, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878CrossRef
20.
Zurück zum Zitat Jin RC, Qian HF, Wu ZK, Zhu Y, Zhu MZ, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1:2903–2910CrossRef Jin RC, Qian HF, Wu ZK, Zhu Y, Zhu MZ, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1:2903–2910CrossRef
21.
Zurück zum Zitat Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M, Li JK, Shen JL, Wang HH, Yeh HI, Parak WJ, Chang WH (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3:395–401CrossRef Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M, Li JK, Shen JL, Wang HH, Yeh HI, Parak WJ, Chang WH (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3:395–401CrossRef
22.
Zurück zum Zitat Lopez-Quintela MA, Tojo C, Blanco MC, Rio LG, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278CrossRef Lopez-Quintela MA, Tojo C, Blanco MC, Rio LG, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278CrossRef
23.
Zurück zum Zitat Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:1401–1402 Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:1401–1402
24.
Zurück zum Zitat Rao TUB, Nataraju B, Pradeep T (2010) Ag9 quantum cluster through a solid–state route. J Am Chem Soc 132:16304–16307CrossRef Rao TUB, Nataraju B, Pradeep T (2010) Ag9 quantum cluster through a solid–state route. J Am Chem Soc 132:16304–16307CrossRef
25.
Zurück zum Zitat Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889CrossRef Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889CrossRef
26.
Zurück zum Zitat Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T (2010) Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2:2769–2776CrossRef Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T (2010) Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2:2769–2776CrossRef
27.
Zurück zum Zitat Yan L, Cai Y, Zheng B, Yuan H, Guo Y, Xiao D, Choi MMF (2012) Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 22:1000–1005CrossRef Yan L, Cai Y, Zheng B, Yuan H, Guo Y, Xiao D, Choi MMF (2012) Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 22:1000–1005CrossRef
28.
Zurück zum Zitat Yang X, Shi M, Zhou R, Chen X, Chen H (2011) Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster. Nanoscale 3:2596–2601CrossRef Yang X, Shi M, Zhou R, Chen X, Chen H (2011) Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster. Nanoscale 3:2596–2601CrossRef
29.
Zurück zum Zitat Huang T, Murray R (2001) Visible luminescence of water-soluble monolayer-protected gold clusters. J Phys Chem B 105:12498–12502CrossRef Huang T, Murray R (2001) Visible luminescence of water-soluble monolayer-protected gold clusters. J Phys Chem B 105:12498–12502CrossRef
30.
Zurück zum Zitat Lee D, Donkers RL, Wang G, Harper AS, Murray RW (2004) Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J Am Chem Soc 126:6193–6199CrossRef Lee D, Donkers RL, Wang G, Harper AS, Murray RW (2004) Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J Am Chem Soc 126:6193–6199CrossRef
31.
Zurück zum Zitat Paau M, Lo C, Yang X, Choi M (2010) Synthesis of 1.4 nm α-cyclodextrin-protected gold nanoparticles for luminescence sensing of mercury(II) with picomolar detection limit. J Phys Chem C 114:15995–16003CrossRef Paau M, Lo C, Yang X, Choi M (2010) Synthesis of 1.4 nm α-cyclodextrin-protected gold nanoparticles for luminescence sensing of mercury(II) with picomolar detection limit. J Phys Chem C 114:15995–16003CrossRef
32.
Zurück zum Zitat Wang Z, Cai W, Sui J (2009) Blue luminescence emitted from monodisperse thiolate-capped Au11clusters. Chem Phys Chem 10:2012–2015 Wang Z, Cai W, Sui J (2009) Blue luminescence emitted from monodisperse thiolate-capped Au11clusters. Chem Phys Chem 10:2012–2015
33.
Zurück zum Zitat Shang L, Dorlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 5:2009–2014CrossRef Shang L, Dorlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 5:2009–2014CrossRef
34.
Zurück zum Zitat Muhammed MAH, Ramesh S, Sinha SS, Pal SK, Pradeep T (2008) Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Res 1:333–340CrossRef Muhammed MAH, Ramesh S, Sinha SS, Pal SK, Pradeep T (2008) Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Res 1:333–340CrossRef
35.
Zurück zum Zitat Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885CrossRef Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885CrossRef
36.
Zurück zum Zitat Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7:6138–6145CrossRef Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7:6138–6145CrossRef
37.
Zurück zum Zitat Gao Y (2013) Ligand effects of thiolate-protected Au102 nanoclusters. J Phys Chem C 117:8983–8988CrossRef Gao Y (2013) Ligand effects of thiolate-protected Au102 nanoclusters. J Phys Chem C 117:8983–8988CrossRef
38.
Zurück zum Zitat Huang CC, Liao HY, Shiang YC, Lin ZH, Yang Z, Chang HT (2009) Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J Mater Chem 19:755–759CrossRef Huang CC, Liao HY, Shiang YC, Lin ZH, Yang Z, Chang HT (2009) Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J Mater Chem 19:755–759CrossRef
39.
Zurück zum Zitat Duan H, Nie S (2007) Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. J Am Chem Soc 129:2412–2413CrossRef Duan H, Nie S (2007) Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. J Am Chem Soc 129:2412–2413CrossRef
40.
Zurück zum Zitat Li L, Li Z, Zhang H, Zhang S, Majeed I, Tan B (2013) Effect of polymer ligand structures on fluorescence of gold clusters prepared by photoreduction. Nanoscale 5:1986–1992CrossRef Li L, Li Z, Zhang H, Zhang S, Majeed I, Tan B (2013) Effect of polymer ligand structures on fluorescence of gold clusters prepared by photoreduction. Nanoscale 5:1986–1992CrossRef
41.
Zurück zum Zitat Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125:7780–7781CrossRef Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125:7780–7781CrossRef
42.
Zurück zum Zitat Jao Y-C, Chen M-K, Lin S-Y (2010) Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. Chem Commun 46:2626–2628CrossRef Jao Y-C, Chen M-K, Lin S-Y (2010) Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. Chem Commun 46:2626–2628CrossRef
43.
Zurück zum Zitat Bao Y, Zhong C, Vu DM, Temirov JP, Dyer RB, Martinez JS (2007) Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C 111:12194–12198CrossRef Bao Y, Zhong C, Vu DM, Temirov JP, Dyer RB, Martinez JS (2007) Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C 111:12194–12198CrossRef
44.
Zurück zum Zitat Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S (2012) Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull 45:69–74CrossRef Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S (2012) Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull 45:69–74CrossRef
45.
Zurück zum Zitat Liu G, Shao Y, Wu F, Xu S, Peng J, Liu L (2013) DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnology 24:1–7 Liu G, Shao Y, Wu F, Xu S, Peng J, Liu L (2013) DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnology 24:1–7
46.
Zurück zum Zitat Choi S, Dickson RM, Yu J (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41:1867–1891CrossRef Choi S, Dickson RM, Yu J (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41:1867–1891CrossRef
47.
Zurück zum Zitat Diez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970CrossRef Diez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970CrossRef
48.
Zurück zum Zitat Li T, Zhang L, Ai J, Dong S, Wang E (2011) Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. ACS Nano 5:6334–6338CrossRef Li T, Zhang L, Ai J, Dong S, Wang E (2011) Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. ACS Nano 5:6334–6338CrossRef
49.
Zurück zum Zitat Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039CrossRef Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039CrossRef
50.
Zurück zum Zitat Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212CrossRef Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212CrossRef
51.
Zurück zum Zitat Yu J, Choi S, Richards CI, Antoku Y, Dickson RM (2008) Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem Photobiol 84:1435–1439CrossRef Yu J, Choi S, Richards CI, Antoku Y, Dickson RM (2008) Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem Photobiol 84:1435–1439CrossRef
52.
Zurück zum Zitat Gwinn EG, O’Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283CrossRef Gwinn EG, O’Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283CrossRef
53.
Zurück zum Zitat Díez I, Pusa M, Kulmala S, Jiang H, Walther AA, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed 48:2122–2125CrossRef Díez I, Pusa M, Kulmala S, Jiang H, Walther AA, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed 48:2122–2125CrossRef
54.
Zurück zum Zitat Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun 9:1088–1090 Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun 9:1088–1090
55.
Zurück zum Zitat Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214CrossRef Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214CrossRef
56.
Zurück zum Zitat Díez I, Jiang H, Ras RHA (2010) Enhanced emission of silver nanoclusters through quantitative phase transfer. Chem Phys Chem 11:3100–3104 Díez I, Jiang H, Ras RHA (2010) Enhanced emission of silver nanoclusters through quantitative phase transfer. Chem Phys Chem 11:3100–3104
57.
Zurück zum Zitat Zhou T, Rong M, Cai Z, Yanga CJ, Chen X (2012) Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2− sensing. Nanoscale 4:4103–4106CrossRef Zhou T, Rong M, Cai Z, Yanga CJ, Chen X (2012) Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2− sensing. Nanoscale 4:4103–4106CrossRef
58.
Zurück zum Zitat Rao TUB, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49:3925–3929CrossRef Rao TUB, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49:3925–3929CrossRef
59.
Zurück zum Zitat Mrudula KV, Bhaskara Rao TU, Pradeep T (2009) Interfacial synthesis of luminescent 7 kDa silver clusters. J Mater Chem 19:4335–4342CrossRef Mrudula KV, Bhaskara Rao TU, Pradeep T (2009) Interfacial synthesis of luminescent 7 kDa silver clusters. J Mater Chem 19:4335–4342CrossRef
60.
Zurück zum Zitat Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983CrossRef Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983CrossRef
61.
Zurück zum Zitat Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11CrossRef Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11CrossRef
62.
Zurück zum Zitat Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017CrossRef Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017CrossRef
63.
Zurück zum Zitat Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866CrossRef Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866CrossRef
64.
Zurück zum Zitat Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for optical detection of cyanide ion. Chem Soc Rev 39:127–137CrossRef Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for optical detection of cyanide ion. Chem Soc Rev 39:127–137CrossRef
65.
Zurück zum Zitat Holmes P, James KAF (2009) Levy LS is low-level environmental mercury exposure of concern to human health. Sci Total Environ 408:171–182CrossRef Holmes P, James KAF (2009) Levy LS is low-level environmental mercury exposure of concern to human health. Sci Total Environ 408:171–182CrossRef
66.
Zurück zum Zitat Pyykkç P (2004) Theoretical chemistry of the gold. Angew Chem Int Ed 43:4412–4456CrossRef Pyykkç P (2004) Theoretical chemistry of the gold. Angew Chem Int Ed 43:4412–4456CrossRef
67.
Zurück zum Zitat Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun 46:961–963CrossRef Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun 46:961–963CrossRef
68.
Zurück zum Zitat Shang L, Dong SJ (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18:4636–4640CrossRef Shang L, Dong SJ (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18:4636–4640CrossRef
69.
Zurück zum Zitat Chen W, Tu X, Guo X (2009) Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem Commun 13:1736–1738 Chen W, Tu X, Guo X (2009) Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem Commun 13:1736–1738
70.
Zurück zum Zitat Lan G-Y, Huang C-C, Chang H-T (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259CrossRef Lan G-Y, Huang C-C, Chang H-T (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259CrossRef
71.
Zurück zum Zitat Yue Y, Liu TY, Li HW, Liu Z, Wu Y (2012) Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4:2251–2254CrossRef Yue Y, Liu TY, Li HW, Liu Z, Wu Y (2012) Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4:2251–2254CrossRef
72.
Zurück zum Zitat Liu YL, Ai KL, Cheng XL, Huo LH, Lu LH (2010) Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide 2043 in water. Adv Funct Mater 20:951–956CrossRef Liu YL, Ai KL, Cheng XL, Huo LH, Lu LH (2010) Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide 2043 in water. Adv Funct Mater 20:951–956CrossRef
73.
Zurück zum Zitat Wang XB, Wang YL, Yang J, Xing XP, Li J, Wang LS (2009) Evidence of significant covalent bonding in Au(CN) 2 − . J Am Chem Soc 131:16368–16370CrossRef Wang XB, Wang YL, Yang J, Xing XP, Li J, Wang LS (2009) Evidence of significant covalent bonding in Au(CN) 2 . J Am Chem Soc 131:16368–16370CrossRef
74.
Zurück zum Zitat Shang L, Dong S (2009) Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron 24:1569–1573CrossRef Shang L, Dong S (2009) Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron 24:1569–1573CrossRef
75.
Zurück zum Zitat Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196CrossRef Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196CrossRef
76.
Zurück zum Zitat Wang Y, Wang Y, Zhou F, Kim P, Xia Y (2012) Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8:3769–3773CrossRef Wang Y, Wang Y, Zhou F, Kim P, Xia Y (2012) Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8:3769–3773CrossRef
77.
Zurück zum Zitat Wang J, Zhang G, Li Q, Jiang H, Liu C, Amatore C, Wang X (2013) In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci Rep 3:1157 Wang J, Zhang G, Li Q, Jiang H, Liu C, Amatore C, Wang X (2013) In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci Rep 3:1157
78.
Zurück zum Zitat Liu C, Ho M, Chen Y, Hsieh C, Lin Y, Wang Y, Yang M, Duan H, Chen B, Lee J (2009) Thiol-functionalized gold nanodots: two-photon absorption property and imaging in vitro. J Phys Chem C 113:21082–21089CrossRef Liu C, Ho M, Chen Y, Hsieh C, Lin Y, Wang Y, Yang M, Duan H, Chen B, Lee J (2009) Thiol-functionalized gold nanodots: two-photon absorption property and imaging in vitro. J Phys Chem C 113:21082–21089CrossRef
Metadaten
Titel
Atom-Precise Metal Nanoclusters
verfasst von
Anu George
Sukhendu Mandal
Copyright-Jahr
2015
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-242-5_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.