Skip to main content
Erschienen in: Cellulose 8/2017

29.05.2017 | Original Paper

Bacterial cellulose based flexible multifunctional nanocomposite sheets

verfasst von: V. Thiruvengadam, Satish Vitta

Erschienen in: Cellulose | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial cellulose is an ideal material that is sustainable, biodegradable and inherently capable of functionalization. Hence this has been functionalized with a single component, Ni to exhibit multiple functionalities such as electrical conductivity, magnetic sensitivity as well as catalytic activity in both dried and hydrogel forms. A novel, simple ‘inverse chemical reduction’ technique has been developed to incorporate this component and make bacterial cellulose multifunctional. This technique mercerizes and opens the interfibrillar spaces which results in the formation of nanoparticles that lead to percolating paths for conduction. The flexible sheet becomes electrically conducting with just 20 vol% of nanoparticles in the composite as determined by thermogravimetry. The room temperature electrical conductance increases by about 7 orders of magnitude, 10−6–10 S on changing the Ni-precursor solution concentration from 0.015 to 0.02 M, indicating this to be the critical concentration for conduction percolation. The composites are highly magnetic at room temperature with a maximum energy product of 140 J m−3, comparable to some of the commercially available bonded oxide magnets. The hydrogel form of the nanocomposite is found to be catalytically active. The catalytic activity is retained even after leaving the nanocomposite hydrogel in water for 12 h in water.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Belford DS, Myers A, Preston RD (1959) A study of the ordered adsorption of metal ions on the surface of cellulose microfibrils. Biochim Biophys Acta 34:47–57CrossRef Belford DS, Myers A, Preston RD (1959) A study of the ordered adsorption of metal ions on the surface of cellulose microfibrils. Biochim Biophys Acta 34:47–57CrossRef
Zurück zum Zitat Chen M, Zhang L, Duan S, Jing S, Jiang H, Luo M, Li C (2014) Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 6:3796–3803CrossRef Chen M, Zhang L, Duan S, Jing S, Jiang H, Luo M, Li C (2014) Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 6:3796–3803CrossRef
Zurück zum Zitat Chen M, Kang H, Gong Y, Guo J, Zhang H, Liu R (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726CrossRef Chen M, Kang H, Gong Y, Guo J, Zhang H, Liu R (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726CrossRef
Zurück zum Zitat Galland S, Andersson RL, Salajkova M, Strom V, Olsson RT, Berglund LA (2013) Cellulose nanofibers decorated with magnetic nanoparticles—synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. J Mater Chem C 1:7963–7972CrossRef Galland S, Andersson RL, Salajkova M, Strom V, Olsson RT, Berglund LA (2013) Cellulose nanofibers decorated with magnetic nanoparticles—synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. J Mater Chem C 1:7963–7972CrossRef
Zurück zum Zitat Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y (2009) Highly conductive paper for energy-storage devices. Procee Natl Acad Sci USA 106:21490–21494CrossRef Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y (2009) Highly conductive paper for energy-storage devices. Procee Natl Acad Sci USA 106:21490–21494CrossRef
Zurück zum Zitat Hu WL, Chen SY, Yang ZH, Liu LT, Wang HP (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457CrossRef Hu WL, Chen SY, Yang ZH, Liu LT, Wang HP (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457CrossRef
Zurück zum Zitat Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N, Beneventi D (2012) Aqueous processing of cellulose based paper-anodes for flexible Li–ion batteries. J Mater Chem 22:3227–3233CrossRef Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N, Beneventi D (2012) Aqueous processing of cellulose based paper-anodes for flexible Li–ion batteries. J Mater Chem 22:3227–3233CrossRef
Zurück zum Zitat Jung YH et al (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRef Jung YH et al (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRef
Zurück zum Zitat Kelly PE, Ogrady K, Mayo PI, Chantrell RW (1989) Switching mechanisms in cobalt–phosphorus thin-films. IEEE Trans Magn 25:3880–3883CrossRef Kelly PE, Ogrady K, Mayo PI, Chantrell RW (1989) Switching mechanisms in cobalt–phosphorus thin-films. IEEE Trans Magn 25:3880–3883CrossRef
Zurück zum Zitat Lee HJ, Chung TJ, Kwon HJ, Kim HJ, Tze WTY (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19:1251–1258CrossRef Lee HJ, Chung TJ, Kwon HJ, Kim HJ, Tze WTY (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19:1251–1258CrossRef
Zurück zum Zitat Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef
Zurück zum Zitat Maria LCS, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros 20:72–77 Maria LCS, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros 20:72–77
Zurück zum Zitat Marins JA, Soares BG, Fraga M, Muller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:1409–1418CrossRef Marins JA, Soares BG, Fraga M, Muller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:1409–1418CrossRef
Zurück zum Zitat Olsson RT et al (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRef Olsson RT et al (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRef
Zurück zum Zitat Pan Y, Weng GJ, Meguid SA, Bao WS, Zhu ZH, Hamouda AMS (2011) Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J Appl Phys 110:123715CrossRef Pan Y, Weng GJ, Meguid SA, Bao WS, Zhu ZH, Hamouda AMS (2011) Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J Appl Phys 110:123715CrossRef
Zurück zum Zitat Park M, Cheng J, Choi J, Kim J, Hyun J (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B Biointerfaces 102:238–242CrossRef Park M, Cheng J, Choi J, Kim J, Hyun J (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B Biointerfaces 102:238–242CrossRef
Zurück zum Zitat Qian C, Sun J, Yang JL, Gao YL (2015) Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. Rsc Adv 5:14567–14574CrossRef Qian C, Sun J, Yang JL, Gao YL (2015) Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. Rsc Adv 5:14567–14574CrossRef
Zurück zum Zitat Rowland SP, Roberts EJ, French AD (1974) Availability and disposition of hydroxyl-groups on surfaces of crystalline cellulose-II. J Polym Sci Pol Chem 12:445–454CrossRef Rowland SP, Roberts EJ, French AD (1974) Availability and disposition of hydroxyl-groups on surfaces of crystalline cellulose-II. J Polym Sci Pol Chem 12:445–454CrossRef
Zurück zum Zitat Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. J Am Chem Soc 75:215–219CrossRef Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. J Am Chem Soc 75:215–219CrossRef
Zurück zum Zitat Seo JH et al (2015) Microwave flexible transistors on cellulose nanofibrillated fiber substrates. Appl Phys Lett 106:262101CrossRef Seo JH et al (2015) Microwave flexible transistors on cellulose nanofibrillated fiber substrates. Appl Phys Lett 106:262101CrossRef
Zurück zum Zitat Sourty E, Ryan DH, Marchessault RH (1998) Ferrite-loaded membranes of microfibrillar bacterial cellulose prepared by in situ precipitation. Chem Mater 10:1755CrossRef Sourty E, Ryan DH, Marchessault RH (1998) Ferrite-loaded membranes of microfibrillar bacterial cellulose prepared by in situ precipitation. Chem Mater 10:1755CrossRef
Zurück zum Zitat Thiruvengadam V, Vitta S (2013) Ni-bacterial cellulose nanocomposite; a magnetically active inorganic-organic hybrid gel. Rsc Adv 3:12765–12773CrossRef Thiruvengadam V, Vitta S (2013) Ni-bacterial cellulose nanocomposite; a magnetically active inorganic-organic hybrid gel. Rsc Adv 3:12765–12773CrossRef
Zurück zum Zitat Thiruvengadam V, Vitta S (2016) Interparticle interactions mediated superspin glass to superferromagnetic transition in Ni-bacterial cellulose aerogel nanocomposites. J Appl Phys 119:244312CrossRef Thiruvengadam V, Vitta S (2016) Interparticle interactions mediated superspin glass to superferromagnetic transition in Ni-bacterial cellulose aerogel nanocomposites. J Appl Phys 119:244312CrossRef
Zurück zum Zitat Thiruvengadam V, Vitta S (2017) Flexible bacterial cellulose/permalloy nanocomposite xerogel sheets—size scalable magnetic actuator-cum-electrical conductor. AIP Adv 7:035107-1CrossRef Thiruvengadam V, Vitta S (2017) Flexible bacterial cellulose/permalloy nanocomposite xerogel sheets—size scalable magnetic actuator-cum-electrical conductor. AIP Adv 7:035107-1CrossRef
Zurück zum Zitat Verlhac C, Dedier J, Chanzy H (1990) Availability of surface hydroxyl-groups in valonia and bacterial cellulose. J Polym Sci Pol Chem 28:1171–1177CrossRef Verlhac C, Dedier J, Chanzy H (1990) Availability of surface hydroxyl-groups in valonia and bacterial cellulose. J Polym Sci Pol Chem 28:1171–1177CrossRef
Zurück zum Zitat Wang HH, Bian LY, Zhou PP, Tang J, Tang WH (2013) Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1:578–584CrossRef Wang HH, Bian LY, Zhou PP, Tang J, Tang WH (2013) Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1:578–584CrossRef
Zurück zum Zitat Xu J, Zhu LG, Bai ZK, Liang GJ, Liu L, Fang D, Xu WL (2013) Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org Electron 14:3331–3338CrossRef Xu J, Zhu LG, Bai ZK, Liang GJ, Liu L, Fang D, Xu WL (2013) Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org Electron 14:3331–3338CrossRef
Zurück zum Zitat Yang J et al (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54:6300–6305CrossRef Yang J et al (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54:6300–6305CrossRef
Zurück zum Zitat Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromol 7:1280–1284CrossRef Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromol 7:1280–1284CrossRef
Zurück zum Zitat Zardetto V, Brown TM, Reale A, Di Carlo A (2011) Substrates for flexible electronics: a practical investigation on the electrical film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci Pol Phys 49:638–648CrossRef Zardetto V, Brown TM, Reale A, Di Carlo A (2011) Substrates for flexible electronics: a practical investigation on the electrical film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci Pol Phys 49:638–648CrossRef
Zurück zum Zitat Zhang W, Chen SY, Hu WL, Zhou BH, Yang ZH, Yin N, Wang HP (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohyd Polym 86:1760–1767CrossRef Zhang W, Chen SY, Hu WL, Zhou BH, Yang ZH, Yin N, Wang HP (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohyd Polym 86:1760–1767CrossRef
Zurück zum Zitat Zhou T et al (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Expr Polym Lett 7:756–766CrossRef Zhou T et al (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Expr Polym Lett 7:756–766CrossRef
Metadaten
Titel
Bacterial cellulose based flexible multifunctional nanocomposite sheets
verfasst von
V. Thiruvengadam
Satish Vitta
Publikationsdatum
29.05.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1350-6

Weitere Artikel der Ausgabe 8/2017

Cellulose 8/2017 Zur Ausgabe