Skip to main content
Erschienen in: Rheologica Acta 3/2022

11.01.2022 | Original Contribution

Bagnold velocity profile for steady-state dense granular chute flow with base slip

verfasst von: James M. Hill, Debayan Bhattacharya, Wei Wu

Erschienen in: Rheologica Acta | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The three-halves Bagnold profile for granular flow down an incline, assuming no-slip at the base, is a generally accepted velocity profile that applies in many instances. In the intermediate dense regime, the material behaviour resembles a Bingham fluid and the widely accepted friction model - μ(I) rheology originally defined within the realms of visco-plasticity applies. Here for steady-state dense granular flow, we derive a generalization of the Bagnold profile which applies to the above- mentioned inter-particle friction approach, for which the Navier slip boundary condition applies at the base, and the Bagnold profile is included as a special case. We extend the Bagnold profile for a Navier slip base and we provide an expression for the slip length which demonstrates the dependence on the fundamental physical constants appearing in the μ(I) framework. The given velocity profile provides a simple formula that captures the major flow characteristics of dense granular chute flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andreotti B, Daerr A, Douady S (2002) Scaling laws in granular flows down a rough plane. Phys Fluids 14(1):415–418CrossRef Andreotti B, Daerr A, Douady S (2002) Scaling laws in granular flows down a rough plane. Phys Fluids 14(1):415–418CrossRef
Zurück zum Zitat Andreotti B, Forterre Y, Pouliquen O (2013) Granular media: between fluid and solid. Cambridge University Press Andreotti B, Forterre Y, Pouliquen O (2013) Granular media: between fluid and solid. Cambridge University Press
Zurück zum Zitat Aranson IS, Tsimring LS (2001) Continuum description of avalanches in granular media. Phys Rev E 64(2):020301 Aranson IS, Tsimring LS (2001) Continuum description of avalanches in granular media. Phys Rev E 64(2):020301
Zurück zum Zitat Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: Theoretical concepts. Rev Mod Phys 78(2):641CrossRef Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: Theoretical concepts. Rev Mod Phys 78(2):641CrossRef
Zurück zum Zitat Artoni R, Santomaso AC, Go M, Canu P (2012) Scaling laws for the slip velocity in dense granular flows. Phys Rev Lett 108(23):238002 Artoni R, Santomaso AC, Go M, Canu P (2012) Scaling laws for the slip velocity in dense granular flows. Phys Rev Lett 108(23):238002
Zurück zum Zitat Azanza E, Chevoir F, Moucheront P (1999) Experimental study of collisional granular flows down an inclined plane. J Fluid Mech 400:199–227CrossRef Azanza E, Chevoir F, Moucheront P (1999) Experimental study of collisional granular flows down an inclined plane. J Fluid Mech 400:199–227CrossRef
Zurück zum Zitat Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc R Soc Lond Ser A Math Phys Sci 225(1160):49–63 Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc R Soc Lond Ser A Math Phys Sci 225(1160):49–63
Zurück zum Zitat Barker T, Schaeffer DG, Bohórquez P, Gray JMNT (2015) Well-posed and ill-posed behaviour of the-rheology for granular flow. J Fluid Mech 779:794–818CrossRef Barker T, Schaeffer DG, Bohórquez P, Gray JMNT (2015) Well-posed and ill-posed behaviour of the-rheology for granular flow. J Fluid Mech 779:794–818CrossRef
Zurück zum Zitat Barker T, Gray JMNT (2017) Partial regularisation of the incompressible μ(i)-rheology for granular flow. J Fluid Mech 828:5–32CrossRef Barker T, Gray JMNT (2017) Partial regularisation of the incompressible μ(i)-rheology for granular flow. J Fluid Mech 828:5–32CrossRef
Zurück zum Zitat Bocquet L, Losert W, Schalk D, Lubensky TC, Gollub JP (2001) Granular shear flow dynamics and forces: Experiment and continuum theory. Phys Rev E 65(1):011307 Bocquet L, Losert W, Schalk D, Lubensky TC, Gollub JP (2001) Granular shear flow dynamics and forces: Experiment and continuum theory. Phys Rev E 65(1):011307
Zurück zum Zitat Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B (2015) Non-local rheology in dense granular flows. Eur Phys J E 38(11):1–15CrossRef Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B (2015) Non-local rheology in dense granular flows. Eur Phys J E 38(11):1–15CrossRef
Zurück zum Zitat Boyer F, Guazzelli E, Pouliquen O (2011) Unifying suspension and granular rheology. Phys Rev Lett 107(18):188301 Boyer F, Guazzelli E, Pouliquen O (2011) Unifying suspension and granular rheology. Phys Rev Lett 107(18):188301
Zurück zum Zitat Campbell CS (1990) Rapid granular flows. Ann Rev Fluid Mech 22(1):57–90CrossRef Campbell CS (1990) Rapid granular flows. Ann Rev Fluid Mech 22(1):57–90CrossRef
Zurück zum Zitat Casado-Dıaz J, Fernández-Cara E, Simon J (2003) Why viscous fluids adhere to rugose walls:: a mathematical explanation. J Differ Equ 189(2):526–537CrossRef Casado-Dıaz J, Fernández-Cara E, Simon J (2003) Why viscous fluids adhere to rugose walls:: a mathematical explanation. J Differ Equ 189(2):526–537CrossRef
Zurück zum Zitat Chambon R, Desrues J, Hammad W, Charlier R (1994) Cloe, a new rate-type constitutive model for geomaterials theoretical basis and implementation. Int J Numer Anal Methods Geomech 18(4):253–278CrossRef Chambon R, Desrues J, Hammad W, Charlier R (1994) Cloe, a new rate-type constitutive model for geomaterials theoretical basis and implementation. Int J Numer Anal Methods Geomech 18(4):253–278CrossRef
Zurück zum Zitat Chambon G, Bouvarel R, Laigle D, Naaim M (2011) Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. J Non-Newtonian Fluid Mech 166(12-13):698–712CrossRef Chambon G, Bouvarel R, Laigle D, Naaim M (2011) Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. J Non-Newtonian Fluid Mech 166(12-13):698–712CrossRef
Zurück zum Zitat Cox BJ, Hill JM (2011) Flow through a circular tube with a permeable navier slip boundary. Nanoscale Res Lett 6(1):1–9CrossRef Cox BJ, Hill JM (2011) Flow through a circular tube with a permeable navier slip boundary. Nanoscale Res Lett 6(1):1–9CrossRef
Zurück zum Zitat Delannay R, Louge M, Richard P, Taberlet N, Valance A (2007) Towards a theoretical picture of dense granular flows down inclines. Nat Mater 6(2):99–108CrossRef Delannay R, Louge M, Richard P, Taberlet N, Valance A (2007) Towards a theoretical picture of dense granular flows down inclines. Nat Mater 6(2):99–108CrossRef
Zurück zum Zitat Ertaş D, Halsey TC (2002) Granular gravitational collapse and chute flow. EPL (EuroPhys Lett) 60(6):931CrossRef Ertaş D, Halsey TC (2002) Granular gravitational collapse and chute flow. EPL (EuroPhys Lett) 60(6):931CrossRef
Zurück zum Zitat Fang C, Wu W (2014a) On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: Part i. equilibrium turbulent closure models. Acta Geotech 9(5):725–737CrossRef Fang C, Wu W (2014a) On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: Part i. equilibrium turbulent closure models. Acta Geotech 9(5):725–737CrossRef
Zurück zum Zitat Fang C, Wu W (2014b) On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: Part ii. complete closure models and numerical simulations. Acta Geotech 9 (5):739–752CrossRef Fang C, Wu W (2014b) On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: Part ii. complete closure models and numerical simulations. Acta Geotech 9 (5):739–752CrossRef
Zurück zum Zitat Fernández N, Enrique D, Garres-díaz J, Mangeney A, Narbona-Reina G (2018) 2d granular flows with the μ (i) rheology and side walls friction: a well-balanced multilayer discretization. J Comput Phys 356:192–219CrossRef Fernández N, Enrique D, Garres-díaz J, Mangeney A, Narbona-Reina G (2018) 2d granular flows with the μ (i) rheology and side walls friction: a well-balanced multilayer discretization. J Comput Phys 356:192–219CrossRef
Zurück zum Zitat Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24CrossRef Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24CrossRef
Zurück zum Zitat Goldhirsch I (2003) Rapid granular flows. Ann Rev Fluid Mech 35(1):267–293CrossRef Goldhirsch I (2003) Rapid granular flows. Ann Rev Fluid Mech 35(1):267–293CrossRef
Zurück zum Zitat Guo X, Peng C, Wu W, Wang Y (2016) A hypoplastic constitutive model for debris materials. Acta Geotech 11(6):1217–1229CrossRef Guo X, Peng C, Wu W, Wang Y (2016) A hypoplastic constitutive model for debris materials. Acta Geotech 11(6):1217–1229CrossRef
Zurück zum Zitat Hill JM (1992) Differential equations and group methods for scientists and engineers. CRC Press Hill JM (1992) Differential equations and group methods for scientists and engineers. CRC Press
Zurück zum Zitat Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68(4):1259CrossRef Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68(4):1259CrossRef
Zurück zum Zitat Jiménez B S, Vernescu B (2017) Derivation of the navier slip and slip length for viscous flows over a rough boundary. Phys Fluids 29(5):057103 Jiménez B S, Vernescu B (2017) Derivation of the navier slip and slip length for viscous flows over a rough boundary. Phys Fluids 29(5):057103
Zurück zum Zitat Jop P, Forterre Y, Pouliquen O (2005) Crucial role of sidewalls in granular surface flows: consequences for the rheology. J Fluid Mech 541:167–192CrossRef Jop P, Forterre Y, Pouliquen O (2005) Crucial role of sidewalls in granular surface flows: consequences for the rheology. J Fluid Mech 541:167–192CrossRef
Zurück zum Zitat Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730CrossRef Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730CrossRef
Zurück zum Zitat Josserand C, Lagrée P-Y, Lhuillier D (2004) Stationary shear flows of dense granular materials: a tentative continuum modelling. Eur Phys J E 14(2):127–135CrossRef Josserand C, Lagrée P-Y, Lhuillier D (2004) Stationary shear flows of dense granular materials: a tentative continuum modelling. Eur Phys J E 14(2):127–135CrossRef
Zurück zum Zitat Kamrin K (2019) Non-locality in granular flow: Phenomenology and modeling approaches. Front Phys 7:116CrossRef Kamrin K (2019) Non-locality in granular flow: Phenomenology and modeling approaches. Front Phys 7:116CrossRef
Zurück zum Zitat Kumaran V (2004) Constitutive relations and linear stability of a sheared granular flow. J Fluid Mech 506:1–43CrossRef Kumaran V (2004) Constitutive relations and linear stability of a sheared granular flow. J Fluid Mech 506:1–43CrossRef
Zurück zum Zitat Lauga E, Brenner M, Stone H (2007) Microfluidics: The No-Slip Boundary Condition. Springer, Berlin, pp 1219–1240 Lauga E, Brenner M, Stone H (2007) Microfluidics: The No-Slip Boundary Condition. Springer, Berlin, pp 1219–1240
Zurück zum Zitat Lemaitre A (2002) Origin of a repose angle: kinetics of rearrangement for granular materials. Phys Rev Lett 89(6):064303 Lemaitre A (2002) Origin of a repose angle: kinetics of rearrangement for granular materials. Phys Rev Lett 89(6):064303
Zurück zum Zitat Louge M Y, Valance A, Lancelot P, Delannay R, Artieres O (2015) Granular flows on a dissipative base. Phys Rev E 92(2):022204 Louge M Y, Valance A, Lancelot P, Delannay R, Artieres O (2015) Granular flows on a dissipative base. Phys Rev E 92(2):022204
Zurück zum Zitat Maali A, Colin S, Bhushan B (2016) Slip length measurement of gas flow. Nanotechnology 27(37):374004 Maali A, Colin S, Bhushan B (2016) Slip length measurement of gas flow. Nanotechnology 27(37):374004
Zurück zum Zitat Martin N, Ionescu IR, Mangeney A, Bouchut F, Farin M (2017) Continuum viscoplastic simulation of a granular column collapse on large slopes: μ (i) rheology and lateral wall effects. Phys Fluids 29(1):013301 Martin N, Ionescu IR, Mangeney A, Bouchut F, Farin M (2017) Continuum viscoplastic simulation of a granular column collapse on large slopes: μ (i) rheology and lateral wall effects. Phys Fluids 29(1):013301
Zurück zum Zitat Matthews MT, Hill JM (2008) A note on the boundary layer equations with linear slip boundary condition. Appl Math Lett 21(8):810–813CrossRef Matthews MT, Hill JM (2008) A note on the boundary layer equations with linear slip boundary condition. Appl Math Lett 21(8):810–813CrossRef
Zurück zum Zitat Mills P, Loggia D, Tixier M (1999) Model for a stationary dense granular flow along an inclined wall. EPL (EuroPhys Lett) 45(6):733CrossRef Mills P, Loggia D, Tixier M (1999) Model for a stationary dense granular flow along an inclined wall. EPL (EuroPhys Lett) 45(6):733CrossRef
Zurück zum Zitat Mohan LS, Rao KK, Nott PR (2002) A frictional cosserat model for the slow shearing of granular materials. J Fluid Mech 457:377– 409CrossRef Mohan LS, Rao KK, Nott PR (2002) A frictional cosserat model for the slow shearing of granular materials. J Fluid Mech 457:377– 409CrossRef
Zurück zum Zitat Mroz Z, Norris VA, Zienkiewicz OC (1979) Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils. Geotechnique 29(1):1–34CrossRef Mroz Z, Norris VA, Zienkiewicz OC (1979) Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils. Geotechnique 29(1):1–34CrossRef
Zurück zum Zitat MuirWood D (2007) The magic of sands—the 20th bjerrum lecture presented in oslo, 25 november 2005. Can Geotech J 44(11):1329–1350 MuirWood D (2007) The magic of sands—the 20th bjerrum lecture presented in oslo, 25 november 2005. Can Geotech J 44(11):1329–1350
Zurück zum Zitat Nedderman RM (2005) Statics and kinematics of granular materials. Cambridge University Press Nedderman RM (2005) Statics and kinematics of granular materials. Cambridge University Press
Zurück zum Zitat Ness C, Sun J (2015) Flow regime transitions in dense non-brownian suspensions: Rheology, microstructural characterization, and constitutive modeling. Phys Rev E 91(1):012201 Ness C, Sun J (2015) Flow regime transitions in dense non-brownian suspensions: Rheology, microstructural characterization, and constitutive modeling. Phys Rev E 91(1):012201
Zurück zum Zitat Pähtz T, Durán O, De Klerk DN, Govender I, Trulsson M (2019) Local rheology relation with variable yield stress ratio across dry, wet, dense, and dilute granular flows. Phys Rev Lett 123(4): 048001 Pähtz T, Durán O, De Klerk DN, Govender I, Trulsson M (2019) Local rheology relation with variable yield stress ratio across dry, wet, dense, and dilute granular flows. Phys Rev Lett 123(4): 048001
Zurück zum Zitat Parez S, Aharonov E, Toussaint R (2016) Unsteady granular flows down an inclined plane. Phys Rev E 93(4):042902 Parez S, Aharonov E, Toussaint R (2016) Unsteady granular flows down an inclined plane. Phys Rev E 93(4):042902
Zurück zum Zitat Peng C, Guo X, Wu W, Wang Y (2016) Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotech 11(6):1231–1247CrossRef Peng C, Guo X, Wu W, Wang Y (2016) Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotech 11(6):1231–1247CrossRef
Zurück zum Zitat Pouliquen O, Forterre Y, Le Dizes S (2001) Slow dense granular flows as a self-induced process. Adv Compl Syst 4(04):441–450CrossRef Pouliquen O, Forterre Y, Le Dizes S (2001) Slow dense granular flows as a self-induced process. Adv Compl Syst 4(04):441–450CrossRef
Zurück zum Zitat Pouliquen O, Forterre Y (2009) A non-local rheology for dense granular flows. Philos Trans R Soc A Math Phys Eng Sci 367(1909):5091–5107CrossRef Pouliquen O, Forterre Y (2009) A non-local rheology for dense granular flows. Philos Trans R Soc A Math Phys Eng Sci 367(1909):5091–5107CrossRef
Zurück zum Zitat Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11 (3):542–548CrossRef Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11 (3):542–548CrossRef
Zurück zum Zitat Radjai F, Roux JN, Daouadji A (2017) Modeling granular materials: century-long research across scales. J Eng Mech 143(4):04017002 Radjai F, Roux JN, Daouadji A (2017) Modeling granular materials: century-long research across scales. J Eng Mech 143(4):04017002
Zurück zum Zitat Rauter M, Barker T, Fellin W (2020) Granular viscosity from plastic yield surfaces: the role of the deformation type in granular flows. Comput Geotech 122:103492CrossRef Rauter M, Barker T, Fellin W (2020) Granular viscosity from plastic yield surfaces: the role of the deformation type in granular flows. Comput Geotech 122:103492CrossRef
Zurück zum Zitat Roux JN, Combe G (2002) Quasistatic rheology and the origins of strain. Comptes Rendus Phys 3(2):131–140CrossRef Roux JN, Combe G (2002) Quasistatic rheology and the origins of strain. Comptes Rendus Phys 3(2):131–140CrossRef
Zurück zum Zitat Roy S, Luding S, Weinhart T (2017) A general(ized) local rheology for wet granular materials. J Phys 19(4):043014 Roy S, Luding S, Weinhart T (2017) A general(ized) local rheology for wet granular materials. J Phys 19(4):043014
Zurück zum Zitat Savage SB (1983) Granular flows down rough inclines-review and extension. Stud Appl Mech 7:261–282CrossRef Savage SB (1983) Granular flows down rough inclines-review and extension. Stud Appl Mech 7:261–282CrossRef
Zurück zum Zitat Savage SB (1998) Analyses of slow high-concentration flows of granular materials. J Fluid Mech 377:1–26CrossRef Savage SB (1998) Analyses of slow high-concentration flows of granular materials. J Fluid Mech 377:1–26CrossRef
Zurück zum Zitat Silbert L E, Ertaş D, Grest GS, Halsey TC, Levine D, Plimpton SJ (2001) Granular flow down an inclined plane: Bagnold scaling and rheology. Phys Rev E 64(5):051302 Silbert L E, Ertaş D, Grest GS, Halsey TC, Levine D, Plimpton SJ (2001) Granular flow down an inclined plane: Bagnold scaling and rheology. Phys Rev E 64(5):051302
Zurück zum Zitat Silbert LE, Landry JW, Grest GS (2003) Granular flow down a rough inclined plane: transition between thin and thick piles. Phys Fluids 15(1):1–10CrossRef Silbert LE, Landry JW, Grest GS (2003) Granular flow down a rough inclined plane: transition between thin and thick piles. Phys Fluids 15(1):1–10CrossRef
Zurück zum Zitat Tamagnini C, Viggiani G, Chambon R, Desrues J (2000) Evaluation of different strategies for the integration of hypoplastic constitutive equations Application to the cloe model. Mech Cohesive-frictional Mater Int J Exper Modell Comput Mater Struct 5(4):263–289 Tamagnini C, Viggiani G, Chambon R, Desrues J (2000) Evaluation of different strategies for the integration of hypoplastic constitutive equations Application to the cloe model. Mech Cohesive-frictional Mater Int J Exper Modell Comput Mater Struct 5(4):263–289
Zurück zum Zitat Zheng XM, Hill JM (1996) Molecular dynamics modelling of granular chute flow: density and velocity profiles. Powder Technol 86(2):219–227CrossRef Zheng XM, Hill JM (1996) Molecular dynamics modelling of granular chute flow: density and velocity profiles. Powder Technol 86(2):219–227CrossRef
Zurück zum Zitat Zhu H, Mehrabadi MM, Massoudi M (2007) The frictional flow of a dense granular material based on the dilatant double shearing model. Comput Math Appl 53(2):244–259CrossRef Zhu H, Mehrabadi MM, Massoudi M (2007) The frictional flow of a dense granular material based on the dilatant double shearing model. Comput Math Appl 53(2):244–259CrossRef
Metadaten
Titel
Bagnold velocity profile for steady-state dense granular chute flow with base slip
verfasst von
James M. Hill
Debayan Bhattacharya
Wei Wu
Publikationsdatum
11.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheologica Acta / Ausgabe 3/2022
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-021-01308-x

Weitere Artikel der Ausgabe 3/2022

Rheologica Acta 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.