Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

23.04.2020

Bandwidth and Gain Enhancement of Rectangular Microstrip Patch Antenna (RMPA) Using Slotted Array Technique

verfasst von: Harshit Srivastava, Amandeep Singh, Arathy Rajeev, Usha Tiwari

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An inherent disadvantage of a Microstrip Patch Antenna (MPA) is its narrow bandwidth and low gain. There are various techniques in the market that either enhances gain or bandwidth of the MPA. The proposed system uses a novel technique which proves to enhance both the bandwidth, as well as the gain up to a great extent, simultaneously. We have tried to overcome these limitations by inserting slots in the proposed Rectangular Microstrip Patch Antenna (RMPA), also known as the slotted array technique. The proposed antenna has been designed for an operating frequency of 9 GHz which lies in the X-band of an electromagnetic system. It has been simulated over an RT Roger/duroid 5880 material that has a dielectric constant of 2.2, using HFSS software. It was observed that the RMPA has a bandwidth of 425.2 MHz, whereas, a bandwidth of 920 MHz has been achieved for slotted RMPA, that means 494.8 MHz of bandwidth enhancement. In addition to this, a gain of 6.92 dB has been achieved for RMPA, whereas, by introducing slots, the gain becomes 19.88 dB, i.e., an enhanced value of 12.96 dB has been achieved. This antenna can be used in various wireless applications such as: Wi-Fi, Bluetooth, and wireless LAN, and satellite and radar communication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Singh, I., & Tripathi, V. S. (2011). Microstrip patch antenna and its application: A survey. International Journal of Computer Technology and Applications, 2(5), 1595–1599. Singh, I., & Tripathi, V. S. (2011). Microstrip patch antenna and its application: A survey. International Journal of Computer Technology and Applications, 2(5), 1595–1599.
2.
Zurück zum Zitat Srivastava, H., Singh, A., Rajeev, A., & Tiwari, U. (2019). Comparison of different microstrip patch antennas with proposed RMPA for wireless applications. In 2019 International conference on power electronics, control and automation (ICPECA) (pp. 1–4). New Delhi, India. Srivastava, H., Singh, A., Rajeev, A., & Tiwari, U. (2019). Comparison of different microstrip patch antennas with proposed RMPA for wireless applications. In 2019 International conference on power electronics, control and automation (ICPECA) (pp. 1–4). New Delhi, India.
3.
Zurück zum Zitat Kaur, H., & Kaur, E. M. (2018). Design of microstrip patch circular antenna using microstrip line feed technique. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 6(X), 1–8. Kaur, H., & Kaur, E. M. (2018). Design of microstrip patch circular antenna using microstrip line feed technique. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 6(X), 1–8.
4.
Zurück zum Zitat Garg, R., Bartia, P., Bahl, I., & Ittipiboon, A. (2001). Microstrip antenna design handbook (pp. 253–316). Norwood, MA: Artech House Inc. Garg, R., Bartia, P., Bahl, I., & Ittipiboon, A. (2001). Microstrip antenna design handbook (pp. 253–316). Norwood, MA: Artech House Inc.
5.
Zurück zum Zitat Paul, L. C., Hosain, M. S., Sarker, S., Prio, M. H., Morshed, M., & Sarkar, A. K. (2015). The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna. American Journal of Networks and Communications, 4(3), 54–58.CrossRef Paul, L. C., Hosain, M. S., Sarker, S., Prio, M. H., Morshed, M., & Sarkar, A. K. (2015). The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna. American Journal of Networks and Communications, 4(3), 54–58.CrossRef
6.
Zurück zum Zitat Guha, D., Chattopadhya, S., & Siddiqu, J. Y. (2010). Estimation of gain enhancement replacing PTFE by air substrate in a microstrip patch antenna [antenna designer’s notebook]. IEEE Antennas and Propagation Magazine, 52(3), 92–95.CrossRef Guha, D., Chattopadhya, S., & Siddiqu, J. Y. (2010). Estimation of gain enhancement replacing PTFE by air substrate in a microstrip patch antenna [antenna designer’s notebook]. IEEE Antennas and Propagation Magazine, 52(3), 92–95.CrossRef
7.
Zurück zum Zitat Midasala, V., & Siddaiah, P. (2016). Microstrip patch antenna array design to improve better gains. Procedia Computer Science, 85, 401–409.CrossRef Midasala, V., & Siddaiah, P. (2016). Microstrip patch antenna array design to improve better gains. Procedia Computer Science, 85, 401–409.CrossRef
8.
Zurück zum Zitat Saravanan, M., Beslin Geo, V., & Umarani, S. M. (2018). Gain enhancement of patch antenna integrated with metamaterial inspired superstrate. Journal of Electrical Systems and Information Technology, 5, 263–270.CrossRef Saravanan, M., Beslin Geo, V., & Umarani, S. M. (2018). Gain enhancement of patch antenna integrated with metamaterial inspired superstrate. Journal of Electrical Systems and Information Technology, 5, 263–270.CrossRef
9.
Zurück zum Zitat Islam, M. T., Shakib, M. N., & Misran, N. (2009). Design analysis of high gain wideband L-probe fed microstrip patch antenna. Progress in Electromagnetics Research, 95, 397–407.CrossRef Islam, M. T., Shakib, M. N., & Misran, N. (2009). Design analysis of high gain wideband L-probe fed microstrip patch antenna. Progress in Electromagnetics Research, 95, 397–407.CrossRef
10.
Zurück zum Zitat Chaimool, S., Chung, K. L., & Akkaraekthalin, P. (2010). Bandwidth and gain enhancement of microstrip patch antennas using reflective metasurface. IEICE Transactions, 93(B), 2496–2503.CrossRef Chaimool, S., Chung, K. L., & Akkaraekthalin, P. (2010). Bandwidth and gain enhancement of microstrip patch antennas using reflective metasurface. IEICE Transactions, 93(B), 2496–2503.CrossRef
11.
Zurück zum Zitat Boutayeb, H., & Denidni, T. A. (2007). Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Transactions on Antennas and Propagation, 55(11), 3140–3145.CrossRef Boutayeb, H., & Denidni, T. A. (2007). Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Transactions on Antennas and Propagation, 55(11), 3140–3145.CrossRef
12.
Zurück zum Zitat Lotfi-Neyestanak, A. A. (2008). Ultra wideband rose leaf microstrip patch antenna. Progress in Electromagnetics Research, 86, 155–168.CrossRef Lotfi-Neyestanak, A. A. (2008). Ultra wideband rose leaf microstrip patch antenna. Progress in Electromagnetics Research, 86, 155–168.CrossRef
13.
Zurück zum Zitat Ang, B.-K., & Chung, B.-K. (2007). A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications. Progress in Electromagnetics Research, 75, 397–407.CrossRef Ang, B.-K., & Chung, B.-K. (2007). A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications. Progress in Electromagnetics Research, 75, 397–407.CrossRef
14.
Zurück zum Zitat Monavar, F. M., & Komjani, N. (2009). Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach. Progress in Electromagnetics Research, 121, 103–120.CrossRef Monavar, F. M., & Komjani, N. (2009). Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach. Progress in Electromagnetics Research, 121, 103–120.CrossRef
15.
Zurück zum Zitat AbuTarboush, H. F., Al-Raweshidy, H. S., & Nilavalan, R. (2009). Bandwidth enhancement for microstrip patch antenna using stacked patch and slot. In 2009 IEEE international workshop on antenna technology (pp. 1–4). Santa Monica, CA. AbuTarboush, H. F., Al-Raweshidy, H. S., & Nilavalan, R. (2009). Bandwidth enhancement for microstrip patch antenna using stacked patch and slot. In 2009 IEEE international workshop on antenna technology (pp. 1–4). Santa Monica, CA.
17.
Zurück zum Zitat Reddy, M. H., Joany, R. M., Reddy, M. J., Sugadev, M., & Logashanmugam, E. (2017). Bandwidth enhancement of microstrip patch antenna using parasitic patch. In 2017 IEEE international conference on smart technologies and management for computing, communication, controls, energy and materials (ICSTM) (pp. 295–298). Chennai. Reddy, M. H., Joany, R. M., Reddy, M. J., Sugadev, M., & Logashanmugam, E. (2017). Bandwidth enhancement of microstrip patch antenna using parasitic patch. In 2017 IEEE international conference on smart technologies and management for computing, communication, controls, energy and materials (ICSTM) (pp. 295–298). Chennai.
18.
Zurück zum Zitat Marotkar, D. S., & Zade, P. (2016). Bandwidth enhancement of microstrip patch antenna using defected ground structure. In 2016 International conference on electrical, electronics, and optimization techniques (ICEEOT) (pp. 1712–1716). Chennai. Marotkar, D. S., & Zade, P. (2016). Bandwidth enhancement of microstrip patch antenna using defected ground structure. In 2016 International conference on electrical, electronics, and optimization techniques (ICEEOT) (pp. 1712–1716). Chennai.
19.
Zurück zum Zitat Fan, S. T., Yin, Y. Z., Lee, B., Hu, W., & Yang, X. (2012). Bandwidth enhancement of a printed slot antenna with a pair of parasitic patches. IEEE Antennas and Wireless Propagation Letters, 11, 1230–1233.CrossRef Fan, S. T., Yin, Y. Z., Lee, B., Hu, W., & Yang, X. (2012). Bandwidth enhancement of a printed slot antenna with a pair of parasitic patches. IEEE Antennas and Wireless Propagation Letters, 11, 1230–1233.CrossRef
20.
Zurück zum Zitat Feng, M., Zhang, J., & Wu, W. (2017). A compact microstrip patch antenna with bandwidth enhancement. In 2017 7th IEEE international symposium on microwave, antenna, propagation, and EMC technologies (MAPE) (pp. 68–70). Xi’an. Feng, M., Zhang, J., & Wu, W. (2017). A compact microstrip patch antenna with bandwidth enhancement. In 2017 7th IEEE international symposium on microwave, antenna, propagation, and EMC technologies (MAPE) (pp. 68–70). Xi’an.
21.
Zurück zum Zitat Ketkuntod, P., Hongnara, T., Thaiwirot, W., & Akkaraekthalin, P. (2017) Gain enhancement of microstrip patch antenna using I-shaped Mushroom-like EBG structure for WLAN application. In 2017 International symposium on antennas and propagation (ISAP) (pp. 1–2). Phuket. Ketkuntod, P., Hongnara, T., Thaiwirot, W., & Akkaraekthalin, P. (2017) Gain enhancement of microstrip patch antenna using I-shaped Mushroom-like EBG structure for WLAN application. In 2017 International symposium on antennas and propagation (ISAP) (pp. 1–2). Phuket.
22.
Zurück zum Zitat Srivastava, H., & Tiwari, U. (2019). Design, simulation and analysis of rectangular and circular microstrip patch antenna for wireless applications. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 2277–3878. Srivastava, H., & Tiwari, U. (2019). Design, simulation and analysis of rectangular and circular microstrip patch antenna for wireless applications. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 2277–3878.
Metadaten
Titel
Bandwidth and Gain Enhancement of Rectangular Microstrip Patch Antenna (RMPA) Using Slotted Array Technique
verfasst von
Harshit Srivastava
Amandeep Singh
Arathy Rajeev
Usha Tiwari
Publikationsdatum
23.04.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07388-x

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt