Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Basic Principles of Biosensing

verfasst von : Mohamed Farhat O. Hameed, A. Samy Saadeldin, Essam M. A. Elkaramany, S. S. A. Obayya

Erschienen in: Computational Photonic Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, optical sensors have been improved extensively due to the rising need of sensing applications in different specialties such as, medicine, military, environment, food quality control. The improvement of the photonic technologies based on the CMOS compatible silicon-on-insulator (SOI) and photonic crystal structures improves the sensing performance significantly. This chapter presents the basic principles of the sensing process. Additionally, it introduces the different configurations of optical sensors based on working principle, sensor design, and detection purpose.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.L. Santos, F. Farahi, Handbook of Optical Sensors (CRC Press Taylor & Francis Group, 2015) J.L. Santos, F. Farahi, Handbook of Optical Sensors (CRC Press Taylor & Francis Group, 2015)
2.
Zurück zum Zitat G. Rajan, Optical Fiber Sensors Advanced Techniques and Applications (CRC Press Taylor & Francis Group, 2015) G. Rajan, Optical Fiber Sensors Advanced Techniques and Applications (CRC Press Taylor & Francis Group, 2015)
3.
Zurück zum Zitat G. Rajan, Y. Semenova, G. Farrell, An all-fiber temperature sensor based on a macro-bend single-mode fiber loop. Electron. Lett. 44, 1123–1124 (2008)CrossRef G. Rajan, Y. Semenova, G. Farrell, An all-fiber temperature sensor based on a macro-bend single-mode fiber loop. Electron. Lett. 44, 1123–1124 (2008)CrossRef
4.
Zurück zum Zitat L.M. Smith, J.Z. Saunders, R.J. Kaiser, P. Hughes, C.R. Dodd, C.R. Cornell, C. Heiner, S.B.H. Kent, L.E. Hood, Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–679 (1986)CrossRef L.M. Smith, J.Z. Saunders, R.J. Kaiser, P. Hughes, C.R. Dodd, C.R. Cornell, C. Heiner, S.B.H. Kent, L.E. Hood, Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–679 (1986)CrossRef
5.
Zurück zum Zitat R.B. Thompson(ed.), Fluorescence Sensors and Biosensors (CRC Press, 2005) R.B. Thompson(ed.), Fluorescence Sensors and Biosensors (CRC Press, 2005)
6.
Zurück zum Zitat K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14(18), R597 (2002)CrossRef K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14(18), R597 (2002)CrossRef
7.
Zurück zum Zitat A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3(9), 1229–1233 (2003)CrossRef A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3(9), 1229–1233 (2003)CrossRef
8.
Zurück zum Zitat T.R. Wolinski, Polarimetric optical fibers and sensors. Prog. Opt. 40, 1–75 (2000)CrossRef T.R. Wolinski, Polarimetric optical fibers and sensors. Prog. Opt. 40, 1–75 (2000)CrossRef
9.
Zurück zum Zitat T.R. Wolinski, P. Lesiak, A.W. Domanski, Polarimetric optical fiber sensors of a new generation for industrial applications. Bullet. Polish Acad. Sci. Tech. Sci. 56(2), 125–132 (2008) T.R. Wolinski, P. Lesiak, A.W. Domanski, Polarimetric optical fiber sensors of a new generation for industrial applications. Bullet. Polish Acad. Sci. Tech. Sci. 56(2), 125–132 (2008)
10.
Zurück zum Zitat X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review. Analytica chimica Acta 620(1), 8–26 (2008)CrossRef X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review. Analytica chimica Acta 620(1), 8–26 (2008)CrossRef
11.
Zurück zum Zitat J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRef J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRef
12.
Zurück zum Zitat K.S. Phillips, Q. Cheng, Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal. Bioanal. Chem. 387(5), 1831–1840 (2007)CrossRef K.S. Phillips, Q. Cheng, Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal. Bioanal. Chem. 387(5), 1831–1840 (2007)CrossRef
13.
Zurück zum Zitat M.A. Cooper, Optical biosensors in drug discovery. Nat. Rev. Drug Disc. 1, 515–528 (2002)CrossRef M.A. Cooper, Optical biosensors in drug discovery. Nat. Rev. Drug Disc. 1, 515–528 (2002)CrossRef
14.
Zurück zum Zitat E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Inter. Sci. 143, 513–526 (1991)CrossRef E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Inter. Sci. 143, 513–526 (1991)CrossRef
15.
Zurück zum Zitat K. Matsubara, S. Kawata, S. Minami, Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27(6), 1160–1163 (1988)CrossRef K. Matsubara, S. Kawata, S. Minami, Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27(6), 1160–1163 (1988)CrossRef
16.
Zurück zum Zitat B. Liedberg, I. Lundström, E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors Actuat. B Chem. 11(1–3), 63–72 (1993)CrossRef B. Liedberg, I. Lundström, E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors Actuat. B Chem. 11(1–3), 63–72 (1993)CrossRef
17.
Zurück zum Zitat A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)CrossRef A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)CrossRef
18.
Zurück zum Zitat F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, L.M. Lechuga, An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14(8), 907 (2003)CrossRef F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, L.M. Lechuga, An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14(8), 907 (2003)CrossRef
19.
Zurück zum Zitat A. Ymeti, J.S. Kanger, R. Wijn, P.V. Lambeck, J. Greve, Development of a multichannel integrated interferometer immunosensor, in Transducers’ 01 Eurosensors XV (Springer, Berlin Heidelberg 2001), pp. 354–357CrossRef A. Ymeti, J.S. Kanger, R. Wijn, P.V. Lambeck, J. Greve, Development of a multichannel integrated interferometer immunosensor, in Transducers’ 01 Eurosensors XV (Springer, Berlin Heidelberg 2001), pp. 354–357CrossRef
20.
Zurück zum Zitat C.A. Barrios, M.J. Bañuls, V. González-Pedro, K.B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, R. Casquel, Label-free optical biosensing with slot-waveguides. Opt. Lett. 33(7), 708–710 (2008)CrossRef C.A. Barrios, M.J. Bañuls, V. González-Pedro, K.B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, R. Casquel, Label-free optical biosensing with slot-waveguides. Opt. Lett. 33(7), 708–710 (2008)CrossRef
21.
Zurück zum Zitat V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209–1211 (2004)CrossRef V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209–1211 (2004)CrossRef
22.
Zurück zum Zitat Ian M. White, Xudong Fan, On the performance quantification of resonant refractive index sensors. Opt. Expr. 16(2), 1020–1028 (2008)CrossRef Ian M. White, Xudong Fan, On the performance quantification of resonant refractive index sensors. Opt. Expr. 16(2), 1020–1028 (2008)CrossRef
23.
Zurück zum Zitat X. Fan, I.M. White, H. Zhu, J.D. Suter, H. Oveys, Overview of novel integrated optical ring resonator bio/chemical sensors, in International Society for Optics and Photonics Laser Resonators and Beam Control IX, Feb. 2007 vol. 6452, p. 64520 X. Fan, I.M. White, H. Zhu, J.D. Suter, H. Oveys, Overview of novel integrated optical ring resonator bio/chemical sensors, in International Society for Optics and Photonics Laser Resonators and Beam Control IX, Feb. 2007 vol. 6452, p. 64520
24.
Zurück zum Zitat T. Claes, J.G. Molera, K. De Vos, E. Schacht, R. Baets, P. Bienstman, Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photon. J. 1(3), 197–204 (2009)CrossRef T. Claes, J.G. Molera, K. De Vos, E. Schacht, R. Baets, P. Bienstman, Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photon. J. 1(3), 197–204 (2009)CrossRef
25.
Zurück zum Zitat X. Tu, J. Song, T.Y. Liow, M.K. Park, J.Q. Yiying, J.S. Kee, M. Yu, G.Q. Lo, Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity. Opt. Expr. 20(3), 2640–2648 (2012)CrossRef X. Tu, J. Song, T.Y. Liow, M.K. Park, J.Q. Yiying, J.S. Kee, M. Yu, G.Q. Lo, Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity. Opt. Expr. 20(3), 2640–2648 (2012)CrossRef
26.
Zurück zum Zitat F. Dell’Olio, V.M. Passaro, Optical sensing by optimized silicon slot waveguides. Opt. Express 15(8), 4977–4993 (2007)CrossRef F. Dell’Olio, V.M. Passaro, Optical sensing by optimized silicon slot waveguides. Opt. Express 15(8), 4977–4993 (2007)CrossRef
27.
Zurück zum Zitat T. Dar, J. Homola, B.A. Rahman, M. Rajarajan, Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34), 8195–8202 (2012)CrossRef T. Dar, J. Homola, B.A. Rahman, M. Rajarajan, Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34), 8195–8202 (2012)CrossRef
28.
Zurück zum Zitat M.F.O. Hameed, A.S. Saadeldin, E.M. Elkaramany, S.S.A. Obayya, Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017)CrossRef M.F.O. Hameed, A.S. Saadeldin, E.M. Elkaramany, S.S.A. Obayya, Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017)CrossRef
29.
Zurück zum Zitat S. Ghosh, B.M.A. Rahman, An innovative straight resonator incorporating a vertical slot as an efficient bio-chemical sensor. IEEE J. Sel. Top. Quant. Electron. 23(2), 1–8 (2017)CrossRef S. Ghosh, B.M.A. Rahman, An innovative straight resonator incorporating a vertical slot as an efficient bio-chemical sensor. IEEE J. Sel. Top. Quant. Electron. 23(2), 1–8 (2017)CrossRef
30.
Zurück zum Zitat B. Troia, A. Paolicelli, F. De Leonardis, V.M. Passaro, Photonic crystals for optical sensing: A review (In Advances in Photonic Crystals, InTech, 2013) B. Troia, A. Paolicelli, F. De Leonardis, V.M. Passaro, Photonic crystals for optical sensing: A review (In Advances in Photonic Crystals, InTech, 2013)
31.
Zurück zum Zitat J. García-Rupérez, V. Toccafondo, M.J. Bañuls, A. Griol, J.G. Castelló, S. Peransi-Llopis, A. Maquieira, Single strand DNA hybridization sensing using photonic crystal waveguide based sensor, in 7th IEEE International Conference on Group IV Photonics (September 2010), 978-1-4244-6346-6, pp. 180–182 J. García-Rupérez, V. Toccafondo, M.J. Bañuls, A. Griol, J.G. Castelló, S. Peransi-Llopis, A. Maquieira, Single strand DNA hybridization sensing using photonic crystal waveguide based sensor, in 7th IEEE International Conference on Group IV Photonics (September 2010), 978-1-4244-6346-6, pp. 180–182
32.
Zurück zum Zitat N. Griffete, H. Frederich, A. Maître, M.M. Chehimi, S. Ravaine, C. Mangeney, Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J. Mater. Chem. 21(34), 13052–13055 (2011)CrossRef N. Griffete, H. Frederich, A. Maître, M.M. Chehimi, S. Ravaine, C. Mangeney, Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J. Mater. Chem. 21(34), 13052–13055 (2011)CrossRef
33.
Zurück zum Zitat H. Lin, Z. Yi, J. Hu, Double resonance 1-D photonic crystal cavities for single molecule mid-infrared photothermal spectroscopy: theory and design. Opt. Lett. 37(8), 1304–1306 (2012)CrossRef H. Lin, Z. Yi, J. Hu, Double resonance 1-D photonic crystal cavities for single molecule mid-infrared photothermal spectroscopy: theory and design. Opt. Lett. 37(8), 1304–1306 (2012)CrossRef
34.
Zurück zum Zitat N.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quant. Electron. 49(1), 5 (2017)CrossRef N.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quant. Electron. 49(1), 5 (2017)CrossRef
35.
Zurück zum Zitat S. Jindal, S. Sobti, M. Kumar, S. Sharma, M.K. Pal, Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J. 16(10), 3705–3710 (2016)CrossRef S. Jindal, S. Sobti, M. Kumar, S. Sharma, M.K. Pal, Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J. 16(10), 3705–3710 (2016)CrossRef
36.
Zurück zum Zitat L. Xiao, W. Jin, M.S. Demokan, Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. Opt. Expr. 15(24), 15637–15647 (2007)CrossRef L. Xiao, W. Jin, M.S. Demokan, Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. Opt. Expr. 15(24), 15637–15647 (2007)CrossRef
37.
Zurück zum Zitat X. Yang, C. Shi, R. Newhouse, J.Z. Zhang, C. Gu, Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int. J. Opt. 754610, 1–11 (2011)CrossRef X. Yang, C. Shi, R. Newhouse, J.Z. Zhang, C. Gu, Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int. J. Opt. 754610, 1–11 (2011)CrossRef
38.
Zurück zum Zitat A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 598178, 1–21 (2012)CrossRef A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 598178, 1–21 (2012)CrossRef
39.
Zurück zum Zitat S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48(2), 142 (2016)CrossRef S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48(2), 142 (2016)CrossRef
40.
Zurück zum Zitat M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett. 28(1), 59–62 (2016)CrossRef M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett. 28(1), 59–62 (2016)CrossRef
41.
Zurück zum Zitat M.F.O. Hameed, Y.K. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)CrossRef M.F.O. Hameed, Y.K. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)CrossRef
Metadaten
Titel
Basic Principles of Biosensing
verfasst von
Mohamed Farhat O. Hameed
A. Samy Saadeldin
Essam M. A. Elkaramany
S. S. A. Obayya
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-76556-3_5