Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Finite Element Method for Sensing Applications

verfasst von : Khaled S. R. Atia, Souvik Ghosh, Ahmed M. Heikal, Mohamed Farhat O. Hameed, B. M. A. Rahman, S. S. A. Obayya

Erschienen in: Computational Photonic Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the fundamentals of the nodal finite element method (FEM) are presented, including the first-order element and second-order element. The nodal FEM is introduced for the scalar concept of the propagation constant of 2D waveguide cross section. Then, it is extended to include the time domain analysis under perfectly matched layer absorbing boundary conditions. A simple sensor based on optical grating is thereafter simulated using the time domain FEM. Also, the full vectorial analysis is discussed through the application of the penalty function method on the nodal FEM and the vector finite element method (VFEM). For the penalty function method, a global weighting factor is used to incorporate the effect of the divergence-free equation. In the VFEM, nodes are used to represent the orthogonal component of the field while the edges are used to represent the tangential component for accurate application of the boundary conditions. Finally, surface plasmon resonance photonic crystal fiber biosensor is introduced as an example of the full vectorial analysis using the VFEM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, 1992)CrossRef M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, 1992)CrossRef
2.
Zurück zum Zitat Zienkiewitz, The Finite Element Method (New York, McGraw-Hill, 1973) Zienkiewitz, The Finite Element Method (New York, McGraw-Hill, 1973)
3.
Zurück zum Zitat M.V.K. Chari, P.P. Silvester, Finite Elements in Electrical and Magnetic Field Problems (Chechester, Wiley, 1980) M.V.K. Chari, P.P. Silvester, Finite Elements in Electrical and Magnetic Field Problems (Chechester, Wiley, 1980)
4.
Zurück zum Zitat E. Yamashita, Analysis Methods for Electromagnetic Wave Problems (Boston, Artech House, 1990) E. Yamashita, Analysis Methods for Electromagnetic Wave Problems (Boston, Artech House, 1990)
5.
Zurück zum Zitat D.B. Davidson, Computational Electromagnetics for RF and Microwave Applications (Cambridge, Cambridge University Press, 2005) D.B. Davidson, Computational Electromagnetics for RF and Microwave Applications (Cambridge, Cambridge University Press, 2005)
6.
Zurück zum Zitat A. Taflov, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech, 1995) A. Taflov, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech, 1995)
7.
Zurück zum Zitat D. Pinto, S.S.A. Obayya, Improved complex-envelope alternating-direction-implicit finite-difference-time-domain method for photonic-bandgap cavities. J. Lightwave Technol. 25(1), 440–447 (2007)CrossRef D. Pinto, S.S.A. Obayya, Improved complex-envelope alternating-direction-implicit finite-difference-time-domain method for photonic-bandgap cavities. J. Lightwave Technol. 25(1), 440–447 (2007)CrossRef
8.
Zurück zum Zitat B. Rahman, J. Davis, Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2(5), 682–688 (1984)CrossRef B. Rahman, J. Davis, Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2(5), 682–688 (1984)CrossRef
9.
Zurück zum Zitat B.M. Azizur Rahman, Finite-element analysis of optical and microwave waveguide problems. IEEE Trans. Microwave Theor. Techniq. 32(1), 20–28 (1984) B.M. Azizur Rahman, Finite-element analysis of optical and microwave waveguide problems. IEEE Trans. Microwave Theor. Techniq. 32(1), 20–28 (1984)
10.
Zurück zum Zitat K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger’s Equation (New York, wiley, 2001) K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger’s Equation (New York, wiley, 2001)
11.
Zurück zum Zitat M. Koshiba, H. Saitoh, M. Eguchi, K. Hirayama, Simple scaler finite element approach to optical waveguides. IEE Proc. J. 139, 166–171 (1992) M. Koshiba, H. Saitoh, M. Eguchi, K. Hirayama, Simple scaler finite element approach to optical waveguides. IEE Proc. J. 139, 166–171 (1992)
12.
Zurück zum Zitat S.S.A. Obayya, Computational Photonics (Wiley, 2011) S.S.A. Obayya, Computational Photonics (Wiley, 2011)
13.
Zurück zum Zitat S.S.A. Obayya, Efficient finite-element-based time-domain beam propagation analysis of Optical integrated circuits. IEEE J. Quant. Electron. 40(5), 591–595 (2004)CrossRef S.S.A. Obayya, Efficient finite-element-based time-domain beam propagation analysis of Optical integrated circuits. IEEE J. Quant. Electron. 40(5), 591–595 (2004)CrossRef
14.
Zurück zum Zitat T. Itoh, R. Mittra, Spectral domain approach for calculation the dispersion characteristics of microstrip lines. IEEE Trans. Microwave Theor. Tech. MTT21 496–499 (1973) T. Itoh, R. Mittra, Spectral domain approach for calculation the dispersion characteristics of microstrip lines. IEEE Trans. Microwave Theor. Tech. MTT21 496–499 (1973)
15.
Zurück zum Zitat A. Abdrabou, A.M. Heikal, S.S.A. Obayya, Efficient rational Chebyshev pseudo-spectral method with domain decomposition for optical waveguides modal analysis. Opt. Express 24(10), 10495–10511 (2016)CrossRef A. Abdrabou, A.M. Heikal, S.S.A. Obayya, Efficient rational Chebyshev pseudo-spectral method with domain decomposition for optical waveguides modal analysis. Opt. Express 24(10), 10495–10511 (2016)CrossRef
16.
Zurück zum Zitat D.M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2012) D.M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2012)
17.
Zurück zum Zitat J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)MathSciNetCrossRef J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)MathSciNetCrossRef
18.
Zurück zum Zitat S.D. Gedney, An anisotropic perfectly matched layer absorbing media for the truncation of FDTD latices. Antennas Prop. IEEE Trans. 44, 1630–1639 (1996) S.D. Gedney, An anisotropic perfectly matched layer absorbing media for the truncation of FDTD latices. Antennas Prop. IEEE Trans. 44, 1630–1639 (1996)
19.
Zurück zum Zitat W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modifie Maxwell’s equations with stretched coordinates. Microwave Opt. Technol. Lett. 7, 590–604 (1994)CrossRef W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modifie Maxwell’s equations with stretched coordinates. Microwave Opt. Technol. Lett. 7, 590–604 (1994)CrossRef
20.
Zurück zum Zitat W.C. Chew, J.M. Jin, E. Michielssen, complex coordinate stretching as a generalized absorbing boundary condition. Microwave Opt. Technol. Lett. 15(6), 363–369 (1997)CrossRef W.C. Chew, J.M. Jin, E. Michielssen, complex coordinate stretching as a generalized absorbing boundary condition. Microwave Opt. Technol. Lett. 15(6), 363–369 (1997)CrossRef
21.
Zurück zum Zitat M. Koshiba, Y. Tsuji, M. Hikari, Time-domain beam propagation method and its application to photonic crystal circuits. J. Lightwave Technol. 18(1), 102–110 (2000)CrossRef M. Koshiba, Y. Tsuji, M. Hikari, Time-domain beam propagation method and its application to photonic crystal circuits. J. Lightwave Technol. 18(1), 102–110 (2000)CrossRef
22.
Zurück zum Zitat V.F. Rodríguez-Esquerre, M. Koshiba, Finite element analysis of photonic crystal cavities: time and frequency domain. J. Lightwave Technol. 23(3), 1514–1521 (2005)CrossRef V.F. Rodríguez-Esquerre, M. Koshiba, Finite element analysis of photonic crystal cavities: time and frequency domain. J. Lightwave Technol. 23(3), 1514–1521 (2005)CrossRef
23.
Zurück zum Zitat T. Fujisawa, M. Koshiba, time-domain beam propagation method for nonlinear optical propagation analysis. J. Lightwave Tech. 22(2), 684–691 (2004)CrossRef T. Fujisawa, M. Koshiba, time-domain beam propagation method for nonlinear optical propagation analysis. J. Lightwave Tech. 22(2), 684–691 (2004)CrossRef
24.
Zurück zum Zitat V.F. Rodríguez-Esquerre, M. Koshiba, E.H.-Figueroa, Frequency-dependent envelope finite element time domain analysis of dispersion materials. Microwave Opt. Tech. Lett. 44(1), 13–16 (2004)CrossRef V.F. Rodríguez-Esquerre, M. Koshiba, E.H.-Figueroa, Frequency-dependent envelope finite element time domain analysis of dispersion materials. Microwave Opt. Tech. Lett. 44(1), 13–16 (2004)CrossRef
25.
Zurück zum Zitat A. Niiyama, M. Koshiba, Y. Tsuji, An efficient scalar finite element formulation for nonlinear optical channel waveguides. J. Lightwave Technol. 13(9), 1919–1925 (1995)CrossRef A. Niiyama, M. Koshiba, Y. Tsuji, An efficient scalar finite element formulation for nonlinear optical channel waveguides. J. Lightwave Technol. 13(9), 1919–1925 (1995)CrossRef
26.
Zurück zum Zitat G.R. Liu, A Generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int. J. Comput. Methods (2008) G.R. Liu, A Generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int. J. Comput. Methods (2008)
27.
Zurück zum Zitat K.S.R. Atia, S.S.A. Obayya, Novel gradient smoothing method-based time domain beam propagation analysis of optical integrated circuits. Signal Process. Photon. Commun. JM3A–23 (2015) K.S.R. Atia, S.S.A. Obayya, Novel gradient smoothing method-based time domain beam propagation analysis of optical integrated circuits. Signal Process. Photon. Commun. JM3A–23 (2015)
28.
Zurück zum Zitat G.R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method (CRC Press, 2009) G.R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method (CRC Press, 2009)
29.
Zurück zum Zitat J.R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge, Cambridge, 2002) J.R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge, Cambridge, 2002)
30.
Zurück zum Zitat K.S.R. Atia, A.M. Heikal, S.S.A. Obayya, Efficient smoothed finite element time domain beam propagation method for photonic devices. Opt. Exp. 23(17), 22199–22213 (2015)CrossRef K.S.R. Atia, A.M. Heikal, S.S.A. Obayya, Efficient smoothed finite element time domain beam propagation method for photonic devices. Opt. Exp. 23(17), 22199–22213 (2015)CrossRef
31.
Zurück zum Zitat K.S.R. Atia, A.M. Heikal, S.S.A. Obayya, Time-domain beam propagation method based on gradient smoothing technique for dispersive materials, in Progress in Electromagnetics Research symposium (PIERS) (2015) K.S.R. Atia, A.M. Heikal, S.S.A. Obayya, Time-domain beam propagation method based on gradient smoothing technique for dispersive materials, in Progress in Electromagnetics Research symposium (PIERS) (2015)
32.
Zurück zum Zitat P.L. Liu, Q. Zhao, F.S. Choa, Slow-wave finite-difference beam propagation method. IEEE Photon. Technol. Lett. 7(8), 890–892 (1995)CrossRef P.L. Liu, Q. Zhao, F.S. Choa, Slow-wave finite-difference beam propagation method. IEEE Photon. Technol. Lett. 7(8), 890–892 (1995)CrossRef
33.
Zurück zum Zitat G.H. Jin, J. Harari, J.P. Vilcot, D. Decoster, An improved time domain beam propagation method for integrated optics components. IEEE Photon. Technol. Lett. 9(3), 117–122 (1997)CrossRef G.H. Jin, J. Harari, J.P. Vilcot, D. Decoster, An improved time domain beam propagation method for integrated optics components. IEEE Photon. Technol. Lett. 9(3), 117–122 (1997)CrossRef
34.
Zurück zum Zitat J. Lee, B. Fornberg, A split step approach for the 3-D Maxwell’s equations. J. Comput. Appl. Math. 158(2), 485–505 (2003)MathSciNetCrossRef J. Lee, B. Fornberg, A split step approach for the 3-D Maxwell’s equations. J. Comput. Appl. Math. 158(2), 485–505 (2003)MathSciNetCrossRef
35.
Zurück zum Zitat M. Movahhedi, A. Abdipour, Alternating direction implicit formulation for the finite element time domain method. IEEE Trans. Microwave Theor. Technol. 55(6), 1322–1331 (2007)CrossRef M. Movahhedi, A. Abdipour, Alternating direction implicit formulation for the finite element time domain method. IEEE Trans. Microwave Theor. Technol. 55(6), 1322–1331 (2007)CrossRef
36.
Zurück zum Zitat J.F. Lee, WETD-A finite element time-domain approach for solving Maxwell’s equations. IEEE Microwave Guided Wave Lett. 4(1), 11–13 (1994)CrossRef J.F. Lee, WETD-A finite element time-domain approach for solving Maxwell’s equations. IEEE Microwave Guided Wave Lett. 4(1), 11–13 (1994)CrossRef
37.
Zurück zum Zitat V.F. Rodríguez-Esquerre, H.E. Hernández-Figueroa, Novel time-domain step-by-step scheme for integrated optical applications. IEEE Photon. Technol. Lett. 13(4), 311–313 (2001)CrossRef V.F. Rodríguez-Esquerre, H.E. Hernández-Figueroa, Novel time-domain step-by-step scheme for integrated optical applications. IEEE Photon. Technol. Lett. 13(4), 311–313 (2001)CrossRef
38.
Zurück zum Zitat H.A. Van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. 13(2), 631–644 (1992)MathSciNetCrossRef H.A. Van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. 13(2), 631–644 (1992)MathSciNetCrossRef
39.
Zurück zum Zitat A.D. Berk, Variational principles for electromagnetic resonators and waveguides. IRE Trans. Antennas Propagat. 4(2) (1956)CrossRef A.D. Berk, Variational principles for electromagnetic resonators and waveguides. IRE Trans. Antennas Propagat. 4(2) (1956)CrossRef
40.
Zurück zum Zitat K.T.V. Grattan, B.T. Meggitt, Optical Fiber Sensor Technology: Fundamental (US, Springer, 2000) K.T.V. Grattan, B.T. Meggitt, Optical Fiber Sensor Technology: Fundamental (US, Springer, 2000)
41.
Zurück zum Zitat T. Dar, J. Homola, B.M.A. Rahman, M. Rajarajan, Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34) (2012)CrossRef T. Dar, J. Homola, B.M.A. Rahman, M. Rajarajan, Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34) (2012)CrossRef
42.
Zurück zum Zitat C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets et al., All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics. 3(4) (2009)CrossRef C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets et al., All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics. 3(4) (2009)CrossRef
43.
Zurück zum Zitat Barrios CA, Banuls MJ, Gonzalez-Pedro V, Gylfason KB, Sanchez, Griol A, et al. Label-free optical biosensing with slot-waveguides. Opt. Lett. 33(7) 2008CrossRef Barrios CA, Banuls MJ, Gonzalez-Pedro V, Gylfason KB, Sanchez, Griol A, et al. Label-free optical biosensing with slot-waveguides. Opt. Lett. 33(7) 2008CrossRef
44.
Zurück zum Zitat M. Koshiba, K. Hayata, M. Suzuki, Vectorial finite-element formulation without spurious solutions for dielectric waveguide problems. Electron. Lett. 20, 409–410 (1984)CrossRef M. Koshiba, K. Hayata, M. Suzuki, Vectorial finite-element formulation without spurious solutions for dielectric waveguide problems. Electron. Lett. 20, 409–410 (1984)CrossRef
45.
Zurück zum Zitat Sh Birman, M. The, Maxwell operator for a resonator with inward edges. Vestnik Leningradskogo Universiteta. Matematika. 19, 1–8 (1986)MATH Sh Birman, M. The, Maxwell operator for a resonator with inward edges. Vestnik Leningradskogo Universiteta. Matematika. 19, 1–8 (1986)MATH
46.
Zurück zum Zitat S.M. Birman, Z.M. Solomyak, Maxwell operator in regions with nonsmooth boundaries. Siberian Malh. J. 28, 12–24 (1987)CrossRef S.M. Birman, Z.M. Solomyak, Maxwell operator in regions with nonsmooth boundaries. Siberian Malh. J. 28, 12–24 (1987)CrossRef
47.
Zurück zum Zitat F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Compur. Methods Appl. Mech. Eng. 64, 509–521 (1987)MathSciNetCrossRef F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Compur. Methods Appl. Mech. Eng. 64, 509–521 (1987)MathSciNetCrossRef
48.
Zurück zum Zitat M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. 8(3) (2016)CrossRef M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. 8(3) (2016)CrossRef
49.
Zurück zum Zitat M.F.O. Hameed, M. El-Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett. 28(1) (2015)CrossRef M.F.O. Hameed, M. El-Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett. 28(1) (2015)CrossRef
50.
Zurück zum Zitat S.I. Azzam, R.E.A. Shehata, M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surfrace plasmon resonance based sensor. J. Opt. Quant. Electron. 48(142) (2016) S.I. Azzam, R.E.A. Shehata, M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surfrace plasmon resonance based sensor. J. Opt. Quant. Electron. 48(142) (2016)
51.
Zurück zum Zitat F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguide. IEEE J. Quant. Electron. 50(6) (2014)CrossRef F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguide. IEEE J. Quant. Electron. 50(6) (2014)CrossRef
52.
Zurück zum Zitat M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Passive polarization converters based on photonic crystal fiber with L-shaped core region. IEEE J. Lightwave Technol. 50(6) (2012) M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Passive polarization converters based on photonic crystal fiber with L-shaped core region. IEEE J. Lightwave Technol. 50(6) (2012)
53.
Zurück zum Zitat M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Novel passive polarization rotator based on spiral photonic crystal fiber. IEEE Photon. Technol. Lett. 25(16) (2013)CrossRef M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Novel passive polarization rotator based on spiral photonic crystal fiber. IEEE Photon. Technol. Lett. 25(16) (2013)CrossRef
54.
Zurück zum Zitat M.F.O. Hameed, S.S.A. Obayya, R.J. Wiltshire, Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3) (2010)CrossRef M.F.O. Hameed, S.S.A. Obayya, R.J. Wiltshire, Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3) (2010)CrossRef
55.
Zurück zum Zitat M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Passive polarization converters based on photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3) (2010) M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Passive polarization converters based on photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3) (2010)
56.
Zurück zum Zitat S.I. Azzam, M.F.O. Hameed, N.F.F. Areed, S.S.A. Obayya, H. El-Mikati et al., Proposal of ultracompact CMOS compatible TE-/TM-pass polarizer based on SOI platform. IEEE Photon. Technol. Lett. 33(13) (2015) S.I. Azzam, M.F.O. Hameed, N.F.F. Areed, S.S.A. Obayya, H. El-Mikati et al., Proposal of ultracompact CMOS compatible TE-/TM-pass polarizer based on SOI platform. IEEE Photon. Technol. Lett. 33(13) (2015)
57.
Zurück zum Zitat A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. IEEE J. Lightwave Technol. 33(13) (2015)CrossRef A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. IEEE J. Lightwave Technol. 33(13) (2015)CrossRef
58.
Zurück zum Zitat S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Computational Liquid Crystal Photonics: Fundamentals (Wiley, Modelling and Applications, 2016)CrossRef S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Computational Liquid Crystal Photonics: Fundamentals (Wiley, Modelling and Applications, 2016)CrossRef
59.
Zurück zum Zitat M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, A.M. Nasr, M.L. Abo el Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fiber coupler. IET Optoelectron. 3(6) (2009) M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, A.M. Nasr, M.L. Abo el Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fiber coupler. IET Optoelectron. 3(6) (2009)
60.
Zurück zum Zitat M.F.O. Hameed, A.M. Heikal, B.M. Younis, M.M. Abdelrazzak, S.S.A. Obayya, Ultra-high tunable liquid crystal plasmonic photonic crystal fiber polarization filter. Opt. Exp. 23(6), 7007–7020 (2015)CrossRef M.F.O. Hameed, A.M. Heikal, B.M. Younis, M.M. Abdelrazzak, S.S.A. Obayya, Ultra-high tunable liquid crystal plasmonic photonic crystal fiber polarization filter. Opt. Exp. 23(6), 7007–7020 (2015)CrossRef
61.
Zurück zum Zitat B.M. Younis, A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Enhancement of plasmonic liquid photonic crystal fiber. Plasmonics p. 1–7 (2016) B.M. Younis, A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Enhancement of plasmonic liquid photonic crystal fiber. Plasmonics p. 1–7 (2016)
Metadaten
Titel
Finite Element Method for Sensing Applications
verfasst von
Khaled S. R. Atia
Souvik Ghosh
Ahmed M. Heikal
Mohamed Farhat O. Hameed
B. M. A. Rahman
S. S. A. Obayya
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-76556-3_6

Neuer Inhalt