Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.04.2020 | ORIGINAL ARTICLE | Ausgabe 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020

Bearing fault diagnostics using EEMD processing and convolutional neural network methods

Zeitschrift:
The International Journal of Advanced Manufacturing Technology > Ausgabe 9-10/2020
Autoren:
Iskander Imed Eddine Amarouayache, Mohamed Nacer Saadi, Noureddine Guersi, Nadir Boutasseta
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The development of an intelligent fault diagnosis system to identify automatically and accurately micro-faults affecting motors continues to be a challenge for industrial rotary machinery and needs to be addressed. In this paper, we put forward a novel approach based on ensemble empirical mode decomposition (EEMD) processing for incipient fault diagnosis of rotating machinery. Accurate selection and reconstruction processes are performed to reconstruct new vibration signals with less noise through the application of EEMD processing to original vibration signals. After the rebuilt of vibration signals, manually extracted features from the reconstructed vibration signals are fed then into a multi-class support vector machine and simultaneously to the mentioned technique, generated image representations of the same raw signals are taken afterward as an input to a deep convolutional neural network (CNN) for classification and fault diagnosis. The comparison between these developed methods demonstrates the effectiveness of the deep learning approach that identifies the differences between classes automatically and can successfully classify and locate the faulty bearing status with very high accuracy for the small size of training data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise