Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 9/2017

10.05.2017 | Original Article

BEM-based simulation of lung respiratory deformation for CT-guided biopsy

verfasst von: Dong Chen, Weisheng Chen, Lipeng Huang, Xuegang Feng, Terry Peters, Lixu Gu

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Accurate and real-time prediction of the lung and lung tumor deformation during respiration are important considerations when performing a peripheral biopsy procedure. However, most existing work focused on offline whole lung simulation using 4D image data, which is not applicable in real-time image-guided biopsy with limited image resources. In this paper, we propose a patient-specific biomechanical model based on the boundary element method (BEM) computed from CT images to estimate the respiration motion of local target lesion region, vessel tree and lung surface for the real-time biopsy guidance.

Methods

This approach applies pre-computation of various BEM parameters to facilitate the requirement for real-time lung motion simulation. The resulting boundary condition at end inspiratory phase is obtained using a nonparametric discrete registration with convex optimization, and the simulation of the internal tissue is achieved by applying a tetrahedron-based interpolation method depend on expert-determined feature points on the vessel tree model. A reference needle is tracked to update the simulated lung motion during biopsy guidance.

Results

We evaluate the model by applying it for respiratory motion estimations of ten patients. The average symmetric surface distance (ASSD) and the mean target registration error (TRE) are employed to evaluate the proposed model. Results reveal that it is possible to predict the lung motion with ASSD of \(1.9\pm 0.8\) mm and a mean TRE of \(2.5\pm 2.1\) mm at largest over the entire respiratory cycle. In the CT-/electromagnetic-guided biopsy experiment, the whole process was assisted by our BEM model and final puncture errors in two studies were 3.1 and 2.0 mm, respectively.

Conclusion

The experiment results reveal that both the accuracy of simulation and real-time performance meet the demands of clinical biopsy guidance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kuntz A, Torres LG, Feins RH, Webster RJ, Alterovitz R (2015) Motion planning for a three-stage multilumen transoral lung access system. IEEE Int Conf Intell Robot Syst. doi:10.1109/IROS.2015.7353829 Kuntz A, Torres LG, Feins RH, Webster RJ, Alterovitz R (2015) Motion planning for a three-stage multilumen transoral lung access system. IEEE Int Conf Intell Robot Syst. doi:10.​1109/​IROS.​2015.​7353829
3.
Zurück zum Zitat Detterbeck FC, Lewis SZ, Diekemper R, Addrizzo-Harris D, Alberts WM (2013) Executive summary: diagnosis and management of lung cancer, 3rd ed: American College of chest physicians evidence-based clinical practice guidelines. Chest J 143:7S–37S. doi:10.1378/chest.12-2377 CrossRef Detterbeck FC, Lewis SZ, Diekemper R, Addrizzo-Harris D, Alberts WM (2013) Executive summary: diagnosis and management of lung cancer, 3rd ed: American College of chest physicians evidence-based clinical practice guidelines. Chest J 143:7S–37S. doi:10.​1378/​chest.​12-2377 CrossRef
5.
6.
Zurück zum Zitat Hanumara NC, Walsh CJ, Slocum AH, Gupta R, Shepard JA (2007) Human factors design for intuitive operation of a low-cost, image-guided, tele-robotic biopsy assistant. In: Annual international conference of the IEEE engineering in medicine and biology proceedings, pp 1257–1260 Hanumara NC, Walsh CJ, Slocum AH, Gupta R, Shepard JA (2007) Human factors design for intuitive operation of a low-cost, image-guided, tele-robotic biopsy assistant. In: Annual international conference of the IEEE engineering in medicine and biology proceedings, pp 1257–1260
8.
Zurück zum Zitat Zhou Y, Thiruvalluvan K, Krzeminski L, Moore WH, Xu Z, Liang Z (2013) CT-guided robotic needle biopsy of lung nodules with respiratory motion—experimental system and preliminary test. Int J Med Robot Comput Assist Surg 9:317–330. doi:10.1002/rcs.1441 CrossRef Zhou Y, Thiruvalluvan K, Krzeminski L, Moore WH, Xu Z, Liang Z (2013) CT-guided robotic needle biopsy of lung nodules with respiratory motion—experimental system and preliminary test. Int J Med Robot Comput Assist Surg 9:317–330. doi:10.​1002/​rcs.​1441 CrossRef
9.
Zurück zum Zitat Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low D a, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874–3900. doi:10.1118/1.2349696 CrossRefPubMed Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low D a, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874–3900. doi:10.​1118/​1.​2349696 CrossRefPubMed
10.
11.
Zurück zum Zitat Low DA, Nystrom M, Kalinin E, Parikh P, Dempsey JF, Bradley JD, Mutic S, Wahab SH, Islam T, Christensen G, Politte DG, Whiting BR (2003) A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys 30:1254–1263. doi:10.1118/1.1576230 CrossRefPubMed Low DA, Nystrom M, Kalinin E, Parikh P, Dempsey JF, Bradley JD, Mutic S, Wahab SH, Islam T, Christensen G, Politte DG, Whiting BR (2003) A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys 30:1254–1263. doi:10.​1118/​1.​1576230 CrossRefPubMed
15.
Zurück zum Zitat Vinogradskiy YY, Castillo R, Castillo E, Chandler A, Martel MK, Guerrero T (2012) Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy. Med Phys 39:289–298. doi:10.1118/1.3668056 CrossRefPubMed Vinogradskiy YY, Castillo R, Castillo E, Chandler A, Martel MK, Guerrero T (2012) Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy. Med Phys 39:289–298. doi:10.​1118/​1.​3668056 CrossRefPubMed
17.
Zurück zum Zitat Ehrhardt J, Werner R, Säring D, Frenzel T, Lu W, Low D, Handels H (2007) An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. Med Phys 34:711–721. doi:10.1118/1.2431245 CrossRefPubMed Ehrhardt J, Werner R, Säring D, Frenzel T, Lu W, Low D, Handels H (2007) An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. Med Phys 34:711–721. doi:10.​1118/​1.​2431245 CrossRefPubMed
18.
19.
Zurück zum Zitat Murphy K, Van Ginneken B, Reinhardt JM, Kabus S, Ding K, Deng X, Cao K, Du K, Christensen GE, Garcia V, Vercauteren T, Ayache N, Commowick O, Malandain G, Glocker B, Paragios N, Navab N, Gorbunova V, Sporring J, De Bruijne M, Han X, Heinrich MP, Schnabel JA, Jenkinson M, Lorenz C, Modat M, McClelland JR, Ourselin S, Muenzing SEA, Viergever MA, De Nigris D, Collins DL, Arbel T, Peroni M, Li R, Sharp GC, Schmidt-Richberg A, Ehrhardt J, Werner R, Smeets D, Loeckx D, Song G, Tustison N, Avants B, Gee JC, Staring M, Klein S, Stoel BC, Urschler M, Werlberger M, Vandemeulebroucke J, Rit S, Sarrut D, Pluim JPW (2011) Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans Med Imaging 30:1901–1920. doi:10.1109/TMI.2011.2158349 CrossRefPubMed Murphy K, Van Ginneken B, Reinhardt JM, Kabus S, Ding K, Deng X, Cao K, Du K, Christensen GE, Garcia V, Vercauteren T, Ayache N, Commowick O, Malandain G, Glocker B, Paragios N, Navab N, Gorbunova V, Sporring J, De Bruijne M, Han X, Heinrich MP, Schnabel JA, Jenkinson M, Lorenz C, Modat M, McClelland JR, Ourselin S, Muenzing SEA, Viergever MA, De Nigris D, Collins DL, Arbel T, Peroni M, Li R, Sharp GC, Schmidt-Richberg A, Ehrhardt J, Werner R, Smeets D, Loeckx D, Song G, Tustison N, Avants B, Gee JC, Staring M, Klein S, Stoel BC, Urschler M, Werlberger M, Vandemeulebroucke J, Rit S, Sarrut D, Pluim JPW (2011) Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans Med Imaging 30:1901–1920. doi:10.​1109/​TMI.​2011.​2158349 CrossRefPubMed
22.
Zurück zum Zitat Fuerst B, Mansi T, Carnis F, Sälzle M, Zhang J, Declerck J, Boettger T, Bayouth J, Navab N, Kamen A (2015) Patient-specific biomechanical model for the prediction of lung motion from 4-D CT images. IEEE Trans Med Imaging 34:599–607. doi:10.1109/TMI.2014.2363611 Fuerst B, Mansi T, Carnis F, Sälzle M, Zhang J, Declerck J, Boettger T, Bayouth J, Navab N, Kamen A (2015) Patient-specific biomechanical model for the prediction of lung motion from 4-D CT images. IEEE Trans Med Imaging 34:599–607. doi:10.​1109/​TMI.​2014.​2363611
23.
25.
Zurück zum Zitat Li M, Castillo E, Zheng X-L, Luo H-Y, Castillo R, Wu Y, Guerrero T (2013) Modeling lung deformation: a combined deformable image registration method with spatially varying Young’s modulus estimates. Med Phys 40:81902. doi:10.1118/1.4812419 CrossRef Li M, Castillo E, Zheng X-L, Luo H-Y, Castillo R, Wu Y, Guerrero T (2013) Modeling lung deformation: a combined deformable image registration method with spatially varying Young’s modulus estimates. Med Phys 40:81902. doi:10.​1118/​1.​4812419 CrossRef
26.
Zurück zum Zitat Heinrich MP, Papiez BW, Schnabel JA, Handels H (2014) Non-parametric discrete registration with convex optimisation. Biomed Image Regist Springer Int Publ 8545:51–61. doi:10.1007/978-3-319-08554-8_6 Heinrich MP, Papiez BW, Schnabel JA, Handels H (2014) Non-parametric discrete registration with convex optimisation. Biomed Image Regist Springer Int Publ 8545:51–61. doi:10.​1007/​978-3-319-08554-8_​6
29.
Zurück zum Zitat James DL, Pai DK (1999) Accurate real time deformable objects. In: Proceedings of 26th annual conference on computer graphics and interactive techniques—SIGGRAPH ’99, pp 65–72. doi:10.1145/311535.311542 James DL, Pai DK (1999) Accurate real time deformable objects. In: Proceedings of 26th annual conference on computer graphics and interactive techniques—SIGGRAPH ’99, pp 65–72. doi:10.​1145/​311535.​311542
30.
Zurück zum Zitat Kim J, Choi C, De S, Srinivasan MA (2007) Virtual surgery simulation for medical training using multi-resolution organ models. Int J Med Robot Comput Assist Surg 3:149–158. doi:10.1002/rcs.140 CrossRef Kim J, Choi C, De S, Srinivasan MA (2007) Virtual surgery simulation for medical training using multi-resolution organ models. Int J Med Robot Comput Assist Surg 3:149–158. doi:10.​1002/​rcs.​140 CrossRef
32.
34.
Zurück zum Zitat Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PMM, Chi Y, Córdova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmüller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Németh G, Raicu DS, Rau AM, Van Rikxoort EM, Rousson M, Ruskó L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1265. doi:10.1109/TMI.2009.2013851 CrossRefPubMed Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PMM, Chi Y, Córdova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmüller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Németh G, Raicu DS, Rau AM, Van Rikxoort EM, Rousson M, Ruskó L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1265. doi:10.​1109/​TMI.​2009.​2013851 CrossRefPubMed
Metadaten
Titel
BEM-based simulation of lung respiratory deformation for CT-guided biopsy
verfasst von
Dong Chen
Weisheng Chen
Lipeng Huang
Xuegang Feng
Terry Peters
Lixu Gu
Publikationsdatum
10.05.2017
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 9/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1603-8

Weitere Artikel der Ausgabe 9/2017

International Journal of Computer Assisted Radiology and Surgery 9/2017 Zur Ausgabe