Skip to main content
Erschienen in: Wireless Networks 2/2021

02.01.2021

BER and channel capacity analysis of wireless system over \({\kappa -\mu /}\)inverse gamma and \({\eta -\mu /}\)inverse gamma composite fading model

verfasst von: Diwaker Pant, Puspraj Singh Chauhan, Sanjay Kumar Soni, Sanjeev Naithani

Erschienen in: Wireless Networks | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The \({\kappa -\mu /}\)Inverse Gamma (KMIG) and \({\eta -\mu /}\)Inverse Gamma (EMIG) are recently introduced composite fading distributions for the precise design of the wireless systems, where multipath fading and shadowing occur concomitantly. Further, these composite fading models are competent to be employed in the performance investigation of the digital communication system as their mathematical formulations are quite tractable. Average symbol error probability (SEP) and channel capacity analysis are important parameters to investigate the performance of a digital communication system. The applicability of these fading models is illustrated by analysing the performance matrices of the digital communication channels in the present work. Various performance matrices such as the average SEP, the channel capacity under different adaptive schemes namely, optimum rate adaptation (ORA), channel inversion with fixed rate (CIFR) and truncated CIFR are derived. The asymptotic analysis of KMIG and EMIG composite fading models over average SEP performance matrices with coding gain and diversity gain is also carried out in this work. The simplified high and low signal-to-noise-ratio solutions to channel capacity are also provided as a by-product. In addition, approximate analysis to ORA and CIFR capacity are provided under realistic environmental conditions. The accuracy of the derived numerical formulations is validated with the use of Monte–Carlo simulation. The results of present work will be advantageous in the modelling and designing of popular wireless services such as vehicle-to-vehicle communication, wearable communication and wireless power transfer related technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dong, Y., & Fan, P. (2013). Bounds on the average transmission rate in high speed railway wireless communications.International Workshop on High Mobility Wireless Communications (HMWC), Shanghai (pp. 142–145). Dong, Y., & Fan, P. (2013). Bounds on the average transmission rate in high speed railway wireless communications.International Workshop on High Mobility Wireless Communications (HMWC), Shanghai (pp. 142–145).
2.
Zurück zum Zitat Nezami, Z., & Zamanifar, K. (2019). Internet of things\(/\)Internet of everything: Structure and ingredients. IEEE Potentials, 38(2), 12–17. Nezami, Z., & Zamanifar, K. (2019). Internet of things\(/\)Internet of everything: Structure and ingredients. IEEE Potentials, 38(2), 12–17.
3.
Zurück zum Zitat Costanzo, A., & Masotti, D. (2017). Energizing 5G: Near-and far-field wireless energy and data transfer as an enabling technology for the 5G IoT. IEEE Microwave Magazine, 18(3), 125–136.CrossRef Costanzo, A., & Masotti, D. (2017). Energizing 5G: Near-and far-field wireless energy and data transfer as an enabling technology for the 5G IoT. IEEE Microwave Magazine, 18(3), 125–136.CrossRef
4.
Zurück zum Zitat Ma, Z., Xiao, M., Xiao, Y., Pang, Z., Poor, H. V., & Vucetic, B. (2019). High-reliability and low-latency wireless communication for internet of things: Challenges, fundamentals, and enabling technologies. IEEE Internet of Things Journal, 6(5), 7946–7970.CrossRef Ma, Z., Xiao, M., Xiao, Y., Pang, Z., Poor, H. V., & Vucetic, B. (2019). High-reliability and low-latency wireless communication for internet of things: Challenges, fundamentals, and enabling technologies. IEEE Internet of Things Journal, 6(5), 7946–7970.CrossRef
5.
Zurück zum Zitat Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2017). The Fisher–Snedecor F distribution: A simple and accurate composite fading model. IEEE Communication Letters, 21(7), 1661–1664.CrossRef Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2017). The Fisher–Snedecor F distribution: A simple and accurate composite fading model. IEEE Communication Letters, 21(7), 1661–1664.CrossRef
6.
Zurück zum Zitat Pant, D., Chauhan, P. S., & Soni, S. K. (2019). Error probability and channel capacity analysis of wireless system over inverse gamma shadowed fading channel with selection diversity. International Journal of Communication Systems, 32(16), e4083.CrossRef Pant, D., Chauhan, P. S., & Soni, S. K. (2019). Error probability and channel capacity analysis of wireless system over inverse gamma shadowed fading channel with selection diversity. International Journal of Communication Systems, 32(16), e4083.CrossRef
7.
Zurück zum Zitat Chauhan, P. S., Rana, V., Kumar, S., Soni, S. K., & Pant, D. (2019). Performance analysis of wireless communication system over non-identical cascaded generalised gamma fading channels. International Journal of Communication Systems, 32(13), e4004.CrossRef Chauhan, P. S., Rana, V., Kumar, S., Soni, S. K., & Pant, D. (2019). Performance analysis of wireless communication system over non-identical cascaded generalised gamma fading channels. International Journal of Communication Systems, 32(13), e4004.CrossRef
8.
Zurück zum Zitat Bhargav, N., Cotton, S. L., & Simmons, D. E. (2016). Secrecy capacity analysis over \(\kappa -\mu\) fading channels: Theory and applications. IEEE Transactions on Communications, 64(7), 3011–3024. Bhargav, N., Cotton, S. L., & Simmons, D. E. (2016). Secrecy capacity analysis over \(\kappa -\mu\) fading channels: Theory and applications. IEEE Transactions on Communications, 64(7), 3011–3024.
9.
Zurück zum Zitat Ramírez-Espinosa, P., & Lopez-Martinez, F. J. (2019). On the Utility of the inverse gamma distribution in modeling composite fading channels. arXiv preprint arXiv: arXiv:1905.00069v1. Ramírez-Espinosa, P., & Lopez-Martinez, F. J. (2019). On the Utility of the inverse gamma distribution in modeling composite fading channels. arXiv preprint arXiv: arXiv:​1905.​00069v1.
10.
Zurück zum Zitat Yoo, S. K., Cotton, S. L., Sofotasios, P. C., & Freear, S. (2016). Shadowed fading in indoor off-body communications channels: A statistical characterization using the \(\kappa -\mu\)/gamma composite fading model. IEEE Transactions on Wireless Communications, 15(8), 5231–5244. Yoo, S. K., Cotton, S. L., Sofotasios, P. C., & Freear, S. (2016). Shadowed fading in indoor off-body communications channels: A statistical characterization using the \(\kappa -\mu\)/gamma composite fading model. IEEE Transactions on Wireless Communications, 15(8), 5231–5244.
11.
Zurück zum Zitat Bithas, P. S. (2009). Weibull-gamma composite distribution: Alternative multipath/shadowing fading model. IET Electronics Letters, 45(14), 749–751.CrossRef Bithas, P. S. (2009). Weibull-gamma composite distribution: Alternative multipath/shadowing fading model. IET Electronics Letters, 45(14), 749–751.CrossRef
12.
Zurück zum Zitat Laourine, A., Alouini, M. S., Affes, S., & Stephenne, A. (2009). On the performance analysis of composite multipath/shadowing channels using the G-distribution. IEEE Transactions on Communications, 57(4), 1162–1170.CrossRef Laourine, A., Alouini, M. S., Affes, S., & Stephenne, A. (2009). On the performance analysis of composite multipath/shadowing channels using the G-distribution. IEEE Transactions on Communications, 57(4), 1162–1170.CrossRef
13.
Zurück zum Zitat Singh, R., Rawat, M., & Pradhan, P. M. (2020). Effective capacity of wireless networks over double shadowed Rician fading channels. Wireless Networks, 26, 1347–1355.CrossRef Singh, R., Rawat, M., & Pradhan, P. M. (2020). Effective capacity of wireless networks over double shadowed Rician fading channels. Wireless Networks, 26, 1347–1355.CrossRef
14.
Zurück zum Zitat Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Matthaiou, M., Valkama, M., & Karagiannidis, G.K . (2015). The \(\kappa -\mu\)/ inverse gamma fading model. In IEEE 26th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Hong Kong (pp. 425–429). Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Matthaiou, M., Valkama, M., & Karagiannidis, G.K . (2015). The \(\kappa -\mu\)/ inverse gamma fading model. In IEEE 26th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Hong Kong (pp. 425–429).
15.
Zurück zum Zitat Yoo, S. K., Sofotasios, P. C., Cotton, S. L., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2015). The \(\eta -\mu\) / inverse gamma composite fading model. In IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Hong Kong (pp. 166–170). Yoo, S. K., Sofotasios, P. C., Cotton, S. L., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2015). The \(\eta -\mu\) / inverse gamma composite fading model. In IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Hong Kong (pp. 166–170).
16.
Zurück zum Zitat Sofotasios, P. C., Theodoros, A. T., Ghogho, M., Wilhelmsson, L. R., & Valkama, M. (2013). The \(\eta\)-\(\mu /IG\) distribution: A novel physical multipath/shadowing fading model. In IEEE ICC 2013-wireless communications symposium (pp. 5715–5719). Sofotasios, P. C., Theodoros, A. T., Ghogho, M., Wilhelmsson, L. R., & Valkama, M. (2013). The \(\eta\)-\(\mu /IG\) distribution: A novel physical multipath/shadowing fading model. In IEEE ICC 2013-wireless communications symposium (pp. 5715–5719).
17.
Zurück zum Zitat Yacoub, M. D. (2007). The \(\kappa -\mu\) Distribution and \(\eta -\mu\) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81. Yacoub, M. D. (2007). The \(\kappa -\mu\) Distribution and \(\eta -\mu\) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.
18.
Zurück zum Zitat Garca-Corrales, C., Canete, F. J., & Paris, J. F. (2014). Capacity of \({\kappa -\mu /}\) shadowed fading channels. HINDAWI International Journal of Antennas and Propagation (pp. 1–8). Garca-Corrales, C., Canete, F. J., & Paris, J. F. (2014). Capacity of \({\kappa -\mu /}\) shadowed fading channels. HINDAWI International Journal of Antennas and Propagation (pp. 1–8).
19.
Zurück zum Zitat Yacoub, M. D. (2007). The \(\alpha -\mu\) distribution: A physical fading model for the Stacy distribution. IEEE Transactions on Vehicular Technology, 56(1), 27–34. Yacoub, M. D. (2007). The \(\alpha -\mu\) distribution: A physical fading model for the Stacy distribution. IEEE Transactions on Vehicular Technology, 56(1), 27–34.
20.
Zurück zum Zitat Heliot, F., Ghavami, M., & Nakhai, M. R. (2008). An accurate closed-form approximation of the average probability of error over log-normal fading channel. IEEE Transactions on Wireless Communications, 7, 1495–1500.CrossRef Heliot, F., Ghavami, M., & Nakhai, M. R. (2008). An accurate closed-form approximation of the average probability of error over log-normal fading channel. IEEE Transactions on Wireless Communications, 7, 1495–1500.CrossRef
21.
Zurück zum Zitat Pan, G., Ekici, E., & Feng, Q. (2012). Capacity analysis of log-normal channel under various adaptive transmission schemes. IEEE Communication Letters, 16, 346–348.CrossRef Pan, G., Ekici, E., & Feng, Q. (2012). Capacity analysis of log-normal channel under various adaptive transmission schemes. IEEE Communication Letters, 16, 346–348.CrossRef
22.
Zurück zum Zitat Enserink, S., & Fitz, P. M. (2013). Estimation of constrained capacity and outage probability in lognormal channels. IEEE Transactions on Vehicular Technology, 62, 399–404.CrossRef Enserink, S., & Fitz, P. M. (2013). Estimation of constrained capacity and outage probability in lognormal channels. IEEE Transactions on Vehicular Technology, 62, 399–404.CrossRef
23.
Zurück zum Zitat Khandelwal, V., & Karmeshu., (2015). Channel capacity analysis over slow fading environment: Unified truncated moment generating function approach. Wireless Personal Communications, 82, 2377–2390.CrossRef Khandelwal, V., & Karmeshu., (2015). Channel capacity analysis over slow fading environment: Unified truncated moment generating function approach. Wireless Personal Communications, 82, 2377–2390.CrossRef
24.
Zurück zum Zitat Safak, A. (1993). Statistical analysis of the power sum of multiple correlated log-normal components. IEEE Transactions on Vehicular Technology, 42, 58–61.CrossRef Safak, A. (1993). Statistical analysis of the power sum of multiple correlated log-normal components. IEEE Transactions on Vehicular Technology, 42, 58–61.CrossRef
25.
Zurück zum Zitat Sakarellos, V. K., Skraparlis, D., Panagopoulos, A. D., & Kanellopoulos, J. D. (2008). Performance of MRC satellite diversity receivers over correlated log-normal and gamma fading channels. 10th international workshop on signal processing for space communication (SPSC). Sakarellos, V. K., Skraparlis, D., Panagopoulos, A. D., & Kanellopoulos, J. D. (2008). Performance of MRC satellite diversity receivers over correlated log-normal and gamma fading channels. 10th international workshop on signal processing for space communication (SPSC).
26.
Zurück zum Zitat Tiwari, D., Soni, S. K., & Chauhan, P. S. (2017). A new closed-form expressions of channel capacity with MRC, EGC and SC over lognormal fading channels. Wireless Personal Communications, 97, 4183–4197.CrossRef Tiwari, D., Soni, S. K., & Chauhan, P. S. (2017). A new closed-form expressions of channel capacity with MRC, EGC and SC over lognormal fading channels. Wireless Personal Communications, 97, 4183–4197.CrossRef
27.
Zurück zum Zitat Chauhan, P. S., & Soni, S. K. (2018). New analytical expressions for ASEP of modulation techniques with diversity over log-normal fading channels with application to interference-limited environment. Wireless Personal Communications, 99, 695–716.CrossRef Chauhan, P. S., & Soni, S. K. (2018). New analytical expressions for ASEP of modulation techniques with diversity over log-normal fading channels with application to interference-limited environment. Wireless Personal Communications, 99, 695–716.CrossRef
28.
Zurück zum Zitat Rana, V., Chauhan, P. S., Soni, S. K., & Bhatt, M. (2017). A new closed-form of ASEP and Channel capacity with MRC and selection combining over Inverse Gaussian shadowing. International Journal of Electronics and Communications (AEU), 74, 107–115.CrossRef Rana, V., Chauhan, P. S., Soni, S. K., & Bhatt, M. (2017). A new closed-form of ASEP and Channel capacity with MRC and selection combining over Inverse Gaussian shadowing. International Journal of Electronics and Communications (AEU), 74, 107–115.CrossRef
29.
Zurück zum Zitat Ram’ırez-Espinosa, P., & L’opez-Mart’ınez, F. J. (2020). Composite fading models based on inverse gamma shadowing: Theory and validation. arXiv:1905.00069v3. Ram’ırez-Espinosa, P., & L’opez-Mart’ınez, F. J. (2020). Composite fading models based on inverse gamma shadowing: Theory and validation. arXiv:​1905.​00069v3.
30.
Zurück zum Zitat Pant, D., Chauhan, P. S., Soni, S. K., & Naithani, S. (2020). Channel capacity analysis of wireless system under ORA scheme over \(\kappa -\mu\)/ inverse gamma and \(\eta -\mu\)/ inverse gamma composite fading models. In 2020 international conference on electrical and electronics engineering (ICE3), Gorakhpur, India (pp. 425–430). Pant, D., Chauhan, P. S., Soni, S. K., & Naithani, S. (2020). Channel capacity analysis of wireless system under ORA scheme over \(\kappa -\mu\)/ inverse gamma and \(\eta -\mu\)/ inverse gamma composite fading models. In 2020 international conference on electrical and electronics engineering (ICE3), Gorakhpur, India (pp. 425–430).
31.
Zurück zum Zitat Alam, S., & Annamalai, A. (2012). Energy detector’s performance analysis over the wireless channels with composite multipath fading and shadowing effects using the AUC approach. In 2012 IEEE consumer communications and networking conference, vol. 74 (pp. 771–775). Alam, S., & Annamalai, A. (2012). Energy detector’s performance analysis over the wireless channels with composite multipath fading and shadowing effects using the AUC approach. In 2012 IEEE consumer communications and networking conference, vol. 74 (pp. 771–775).
32.
Zurück zum Zitat Shanker, P. M. (2004). Error rates in generalized shadowed fading channels. Wireless Personal Communications, 28, 233–238.CrossRef Shanker, P. M. (2004). Error rates in generalized shadowed fading channels. Wireless Personal Communications, 28, 233–238.CrossRef
33.
Zurück zum Zitat Abdi, A., & Kaveh, M. (2009). Weibull-gamma composite distribution: Alternative multipath/shadowing fading model. Electronics Letters, 45(14), 749–751.CrossRef Abdi, A., & Kaveh, M. (2009). Weibull-gamma composite distribution: Alternative multipath/shadowing fading model. Electronics Letters, 45(14), 749–751.CrossRef
34.
Zurück zum Zitat Sofotasios, P. C., & Freear, S. (2011). On the \({\kappa -\mu /}\)Gamma composite distribution: A generalized multipath/shadowing fading model. Proceedings IEEE ICOM, 45, 390–394. Sofotasios, P. C., & Freear, S. (2011). On the \({\kappa -\mu /}\)Gamma composite distribution: A generalized multipath/shadowing fading model. Proceedings IEEE ICOM, 45, 390–394.
35.
Zurück zum Zitat Zhang, J., Matthaiou, M., Tan, Z., & Wang, H. (2012). Performance analysis of digital communication systems over composite \({\eta -\mu /}\)Gamma fading channels. IEEE Transactions on Vehicular Technology, 61(7), 3114–3124. Zhang, J., Matthaiou, M., Tan, Z., & Wang, H. (2012). Performance analysis of digital communication systems over composite \({\eta -\mu /}\)Gamma fading channels. IEEE Transactions on Vehicular Technology, 61(7), 3114–3124.
36.
Zurück zum Zitat Yoo, S. K., Cotton, S. L., Sofotasios, P. C., & Freear, S. (2011). Shadowed fading in indoor off-body communication channels: A statistical characterization using the \({\kappa -\mu /}\)Gamma composite fading model. IEEE Transactions on Wireless Communications, 5(8), 5231–5244. Yoo, S. K., Cotton, S. L., Sofotasios, P. C., & Freear, S. (2011). Shadowed fading in indoor off-body communication channels: A statistical characterization using the \({\kappa -\mu /}\)Gamma composite fading model. IEEE Transactions on Wireless Communications, 5(8), 5231–5244.
37.
Zurück zum Zitat Al-Hmood, H., & Al-Raweshidy, H. S. (2017). Unified modelling of composite \({\kappa -\mu /}\)Gamma, \({\eta -\mu /}\)Gamma, and \({\alpha -\mu /}\)Gamma fading channels using a mixture Gamma distribution with application to energy detection. IEEE Antennas Wireless Propagation Letters, 16, 104–108. Al-Hmood, H., & Al-Raweshidy, H. S. (2017). Unified modelling of composite \({\kappa -\mu /}\)Gamma, \({\eta -\mu /}\)Gamma, and \({\alpha -\mu /}\)Gamma fading channels using a mixture Gamma distribution with application to energy detection. IEEE Antennas Wireless Propagation Letters, 16, 104–108.
38.
Zurück zum Zitat Al-Ahmadi, S., & Yanikomeroglu, H. (2010). On the approximation of the generalized-distribution by a gamma distribution for modeling composite fading channels. IEEE Transactions on Wireless Communications, 9(2), 706–713.CrossRef Al-Ahmadi, S., & Yanikomeroglu, H. (2010). On the approximation of the generalized-distribution by a gamma distribution for modeling composite fading channels. IEEE Transactions on Wireless Communications, 9(2), 706–713.CrossRef
39.
Zurück zum Zitat Karmeshu and Agrawal R., (2007). On efficacy of Rayleigh-inverse Gaussian distribution over \(K\)-distribution for wireless fading channels. Wireless Communication and Mobile Computing, 7, 1–7. Karmeshu and Agrawal R., (2007). On efficacy of Rayleigh-inverse Gaussian distribution over \(K\)-distribution for wireless fading channels. Wireless Communication and Mobile Computing, 7, 1–7.
40.
Zurück zum Zitat Yoo, S. K., Bhargav, N., & Cotton, S. L., et al. (2017). The \({\kappa -\mu /}\)Inverse Gamma and \({\eta -\mu /}\)Inverse Gamma composite fading models: fundamental statistics and empirical validation. IEEE Transaction on Communications. Yoo, S. K., Bhargav, N., & Cotton, S. L., et al. (2017). The \({\kappa -\mu /}\)Inverse Gamma and \({\eta -\mu /}\)Inverse Gamma composite fading models: fundamental statistics and empirical validation. IEEE Transaction on Communications.
41.
Zurück zum Zitat Sofotasios, P. C. et al. (2018). Capacity analysis under generalized composite fading conditions. In International conference on advanced communication technologies and networking (CommNet), Marrakech (pp. 1–10). Sofotasios, P. C. et al. (2018). Capacity analysis under generalized composite fading conditions. In International conference on advanced communication technologies and networking (CommNet), Marrakech (pp. 1–10).
42.
Zurück zum Zitat Glen, A. G. (2017). On the inverse gamma as a survival distribution. In Computational probability applications (pp. 15–30). Glen, A. G. (2017). On the inverse gamma as a survival distribution. In Computational probability applications (pp. 15–30).
43.
Zurück zum Zitat Badarneh, O. S. (2020). The \(\alpha\)-\(\eta\)-\(\cal{F}\) and \(\alpha\)-\(\kappa\)-\(\cal{F}\) composite fading distributions. IEEE Communications Letters, 24(9), 1924–1928. Badarneh, O. S. (2020). The \(\alpha\)-\(\eta\)-\(\cal{F}\) and \(\alpha\)-\(\kappa\)-\(\cal{F}\) composite fading distributions. IEEE Communications Letters, 24(9), 1924–1928.
44.
Zurück zum Zitat Yoo, S. K., Sofotasios, P. C., Cotton, S. L., Muhaidat, S., Lopez-Martinez, F. J., Romero-Jerez, J. M., & Karagiannidis, G .K. (2020). A comprehensive analysis of the achievable channel capacity in \(\cal{F}\) composite fading channels. IEEE Access, vol. 7 (pp. 34078–34094). Yoo, S. K., Sofotasios, P. C., Cotton, S. L., Muhaidat, S., Lopez-Martinez, F. J., Romero-Jerez, J. M., & Karagiannidis, G .K. (2020). A comprehensive analysis of the achievable channel capacity in \(\cal{F}\) composite fading channels. IEEE Access, vol. 7 (pp. 34078–34094).
45.
Zurück zum Zitat Badarneh, O. S., Shawaqfeh, M. K., & Kadoch, M. (2020). Performance analysis of mobile IoT networks over composite fading channels. In International wireless communications and mobile computing (IWCMC) (pp. 1234–1239). Badarneh, O. S., Shawaqfeh, M. K., & Kadoch, M. (2020). Performance analysis of mobile IoT networks over composite fading channels. In International wireless communications and mobile computing (IWCMC) (pp. 1234–1239).
46.
Zurück zum Zitat Rabie, K., Makarfi, A. U., Kharel, R., Badarneh, O. S., Adebisi, B., Li, X., & Ding, Z. (2020). On the Performance of non-orthogonal multiple access over composite fading channels. arXiv: 2004.07860v1. Rabie, K., Makarfi, A. U., Kharel, R., Badarneh, O. S., Adebisi, B., Li, X., & Ding, Z. (2020). On the Performance of non-orthogonal multiple access over composite fading channels. arXiv:​ 2004.​07860v1.
47.
Zurück zum Zitat Bithas, P. S., Nikolaidis, V., Kanatas, A. G., & Karagiannidis, G. K. (2020). UAV-to-ground communications: Channel modeling and UAV selection. IEEE Transactions on Communications, 68(8), 5135–5144.CrossRef Bithas, P. S., Nikolaidis, V., Kanatas, A. G., & Karagiannidis, G. K. (2020). UAV-to-ground communications: Channel modeling and UAV selection. IEEE Transactions on Communications, 68(8), 5135–5144.CrossRef
48.
Zurück zum Zitat Sofotasios, P. C., et al. (2018). Ergodic capacity analysis of wireless transmission over generalized multipath/shadowing channels. In 2018 IEEE 87th vehicular technology conference (VTC Spring), Porto (pp. 1–5). Sofotasios, P. C., et al. (2018). Ergodic capacity analysis of wireless transmission over generalized multipath/shadowing channels. In 2018 IEEE 87th vehicular technology conference (VTC Spring), Porto (pp. 1–5).
49.
Zurück zum Zitat Sofotasios, P. C., et al. (2018). Error analysis of wireless transmission over generalized multipath/shadowing channels. In 2018 IEEE wireless communications and networking conference (WCNC), Barcelona (pp. 1–6). Sofotasios, P. C., et al. (2018). Error analysis of wireless transmission over generalized multipath/shadowing channels. In 2018 IEEE wireless communications and networking conference (WCNC), Barcelona (pp. 1–6).
50.
Zurück zum Zitat Gradshteyn I. S., & Ryzhik I. M. (2007). Table of integrals, series, and products, 7th edn. Academic Press, New York. Gradshteyn I. S., & Ryzhik I. M. (2007). Table of integrals, series, and products, 7th edn. Academic Press, New York.
52.
Zurück zum Zitat Badarneh, O. S., & Aloqlah, M. S. (2016). Performance analysis of digital communication systems over \(\alpha -\eta -\mu\) fading channels. IEEE Transaction on Vehicular Technology, 65(10), 7972–7981. Badarneh, O. S., & Aloqlah, M. S. (2016). Performance analysis of digital communication systems over \(\alpha -\eta -\mu\) fading channels. IEEE Transaction on Vehicular Technology, 65(10), 7972–7981.
53.
Zurück zum Zitat Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integral series, Elementary functions. The Netherlands: Gordon and Breach (p. 2). Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integral series, Elementary functions. The Netherlands: Gordon and Breach (p. 2).
54.
Zurück zum Zitat Srivastava, H. M., Rahman, G., & Nisar, K. S. (2019). Some extensions of the pochhammer symbol and the associated hypergeometric functions. Iranian Journal of Science and Technology, Transactions A: Science, 43, 2601–2606.MathSciNetCrossRef Srivastava, H. M., Rahman, G., & Nisar, K. S. (2019). Some extensions of the pochhammer symbol and the associated hypergeometric functions. Iranian Journal of Science and Technology, Transactions A: Science, 43, 2601–2606.MathSciNetCrossRef
55.
Zurück zum Zitat Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integral series. Elementary functions, The Netherlands: Gordon and Breach (p. 1). Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integral series. Elementary functions, The Netherlands: Gordon and Breach (p. 1).
56.
Zurück zum Zitat Chauhan, P. S., Tiwari, D., & Soni, S. K. (2017). New analytical expressions for the performance metrics of wireless communication system over Weibull/Lognormal composite fading. International Journal of Electronics and Communication (AEU), 82, 397–405.CrossRef Chauhan, P. S., Tiwari, D., & Soni, S. K. (2017). New analytical expressions for the performance metrics of wireless communication system over Weibull/Lognormal composite fading. International Journal of Electronics and Communication (AEU), 82, 397–405.CrossRef
57.
Zurück zum Zitat Simon, M. K., & Alouini, M. S. (1998). A unified approach to the probability of error for noncoherent and differentially coherent modulations over Generalized fading channels. IEEE Transaction on Communication, 46(12), 1625–1638.CrossRef Simon, M. K., & Alouini, M. S. (1998). A unified approach to the probability of error for noncoherent and differentially coherent modulations over Generalized fading channels. IEEE Transaction on Communication, 46(12), 1625–1638.CrossRef
58.
Zurück zum Zitat Chauhan, P. S., & Soni, S. K. (2019). Average SEP and channel capacity analysis over Generic/IG composite fading channels: A unified approach. Physical Communication, 34, 9–18.CrossRef Chauhan, P. S., & Soni, S. K. (2019). Average SEP and channel capacity analysis over Generic/IG composite fading channels: A unified approach. Physical Communication, 34, 9–18.CrossRef
59.
Zurück zum Zitat Chauhan, P. S., Kumar, S., & Soni, S. K. (2019). New approximate expressions of average symbol error probability, probability of detection and AUC with MRC over generic and composite fading channels. International Journal of Electron. and Communication (AEU), 99, 119–129.CrossRef Chauhan, P. S., Kumar, S., & Soni, S. K. (2019). New approximate expressions of average symbol error probability, probability of detection and AUC with MRC over generic and composite fading channels. International Journal of Electron. and Communication (AEU), 99, 119–129.CrossRef
60.
Zurück zum Zitat Marvin, K. S., & Alouini, M. S. (2000). Digital communication over fading channels. Hoboken, New Jersey: John Wiley and Sons Inc. Marvin, K. S., & Alouini, M. S. (2000). Digital communication over fading channels. Hoboken, New Jersey: John Wiley and Sons Inc.
61.
Zurück zum Zitat Wang, Z., & Giannakis, G. B. (2003). A simple and general parametrization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.CrossRef Wang, Z., & Giannakis, G. B. (2003). A simple and general parametrization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.CrossRef
Metadaten
Titel
BER and channel capacity analysis of wireless system over inverse gamma and inverse gamma composite fading model
verfasst von
Diwaker Pant
Puspraj Singh Chauhan
Sanjay Kumar Soni
Sanjeev Naithani
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02507-9

Weitere Artikel der Ausgabe 2/2021

Wireless Networks 2/2021 Zur Ausgabe