Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Beyond the surface: mathematical insights into water waves and quantum fields

verfasst von: Yuanjian Lin, Mostafa M. A. Khater

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper examines the complex characteristics of the modified Benjamin–Bona–Mahony equation (\(\text {m}{\mathcal {BBM}}\)) and the Klein–Gordon (\({\mathcal{K}\mathcal{G}}\)) equation in the field of mathematical physics. The \(\text {m}{\mathcal {BBM}}\) equation is a basic model used to describe surface water waves, especially in shallow water situations. It provides valuable information on wave propagation, stability, and the formation of solitons. The applications of this instrument are wide-ranging, including fields such as oceanography, where it plays a crucial role in comprehending wave behavior. On the other hand, the \({\mathcal{K}\mathcal{G}}\) equation is of utmost importance in quantum field theory since it sheds light on the dynamics and interactions of scalar fields such as mesons. Within the field of particle physics, it offers substantial insights into basic concepts, acting as a fundamental basis for comprehending particle behavior. The primary goal of our work is to develop strong analytical techniques for solving these problems. In order to tackle these issues, we use two novel methodologies: the extended simple equation technique and the generalized Kudryashov method. Furthermore, we validate our results by using the extended cubic–B–spline approach for numerical computations. The work effectively solves these intricate equations, resulting in encouraging results. The presented approaches demonstrate their effectiveness, providing significant advances to mathematical physics. This work has inherent worth by presenting innovative analytical methods and perspectives, particularly designed to solve complex nonlinear equations such as the \(\text {m}{\mathcal {BBM}}\) and \({\mathcal{K}\mathcal{G}}\) equations. The finding has significant ramifications that extend across several scientific fields, offering novel approaches to tackle complex issues in mathematical physics. To summarize, our paper introduces innovative analytical techniques designed to solve nonlinear equations in the field of mathematical physics, with a particular emphasis on the \(\text {m}{\mathcal {BBM}}\) and \({\mathcal{K}\mathcal{G}}\) equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adeyefa, E.O., Omole, E.O., Shokri, A.: Numerical solution of second-order nonlinear partial differential equations originating from physical phenomena using Hermite based block methods. Results Phys. 46, 106270 (2023) Adeyefa, E.O., Omole, E.O., Shokri, A.: Numerical solution of second-order nonlinear partial differential equations originating from physical phenomena using Hermite based block methods. Results Phys. 46, 106270 (2023)
Zurück zum Zitat Aid, S.E., Boukabcha, H., Hemis, M.: Path integral treatment of a Klein Gordon particle with generalized inverse Quadratic Yukawa potential. Phys. Scr. 98(10), 105413 (2023)ADS Aid, S.E., Boukabcha, H., Hemis, M.: Path integral treatment of a Klein Gordon particle with generalized inverse Quadratic Yukawa potential. Phys. Scr. 98(10), 105413 (2023)ADS
Zurück zum Zitat Akbulut, A., Islam, S.M.R., Rezazadeh, H., Taşcan, F.: Obtaining exact solutions of nonlinear partial differential equations via two different methods. Int. J. Mod. Phys. B 36(5), 2250041 (2022)ADS Akbulut, A., Islam, S.M.R., Rezazadeh, H., Taşcan, F.: Obtaining exact solutions of nonlinear partial differential equations via two different methods. Int. J. Mod. Phys. B 36(5), 2250041 (2022)ADS
Zurück zum Zitat Bagchi, B., Das, S., Ganguly, A.: New Multi-order exact solutions for a class of nonlinear evolution equations (2011) arXiv:1111.4644 Bagchi, B., Das, S., Ganguly, A.: New Multi-order exact solutions for a class of nonlinear evolution equations (2011) arXiv:​1111.​4644
Zurück zum Zitat Baskonus, H.M., Bulut, H.: An effective schema for solving some nonlinear partial differential equation arising in nonlinear physics. Open Phys. 13(1), 35 (2015)ADS Baskonus, H.M., Bulut, H.: An effective schema for solving some nonlinear partial differential equation arising in nonlinear physics. Open Phys. 13(1), 35 (2015)ADS
Zurück zum Zitat Bentrcia, T., Mennouni, A.: On the solution behavior of a nonlinear time-fractional Klein–Gordon equation: theoretical study and numerical validation. Commun. Nonlinear Sci. Numer. Simul. 125, 107384 (2023)MathSciNet Bentrcia, T., Mennouni, A.: On the solution behavior of a nonlinear time-fractional Klein–Gordon equation: theoretical study and numerical validation. Commun. Nonlinear Sci. Numer. Simul. 125, 107384 (2023)MathSciNet
Zurück zum Zitat Filiz, T., Ahmet, B.: Applications of the first integral method to nonlinear evolution equations. Chin. Phys. B 19(8), 080201 (2010)ADS Filiz, T., Ahmet, B.: Applications of the first integral method to nonlinear evolution equations. Chin. Phys. B 19(8), 080201 (2010)ADS
Zurück zum Zitat Genovese, G., Lucà, R., Tzvetkov, N.: Transport of Gaussian measures with exponential cut-off for Hamiltonian PDEs (2021) arXiv:2103.04408 Genovese, G., Lucà, R., Tzvetkov, N.: Transport of Gaussian measures with exponential cut-off for Hamiltonian PDEs (2021) arXiv:​2103.​04408
Zurück zum Zitat Hou, E., Wang, F., Salama, S.A., Khater, M.M.A.: Dynamical behavior of the long waves in the nonlinear dispersive media through analytical and numerical investigation. Fractals 30(5), 2240131–515 (2022)ADS Hou, E., Wang, F., Salama, S.A., Khater, M.M.A.: Dynamical behavior of the long waves in the nonlinear dispersive media through analytical and numerical investigation. Fractals 30(5), 2240131–515 (2022)ADS
Zurück zum Zitat Ismailov, M.I., Sabaz, C.: Inverse scattering method via Riemann–Hilbert problem for nonlinear Klein–Gordon equation coupled with a scalar field. J. Phys. Soc. Jpn. 92(10), 104001 (2023)ADS Ismailov, M.I., Sabaz, C.: Inverse scattering method via Riemann–Hilbert problem for nonlinear Klein–Gordon equation coupled with a scalar field. J. Phys. Soc. Jpn. 92(10), 104001 (2023)ADS
Zurück zum Zitat Javeed, S., Imran, T., Ahmad, H., Tchier, F., Zhao, Y.-H.: New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method. Open Phys. 21(1), 229 (2023)ADS Javeed, S., Imran, T., Ahmad, H., Tchier, F., Zhao, Y.-H.: New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method. Open Phys. 21(1), 229 (2023)ADS
Zurück zum Zitat Javeed, S., Imran, T., Ahmad, H., Tchier, F., Zhao, Y.-H.: New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method. Open Phys. 21(1), 229 (2023)ADS Javeed, S., Imran, T., Ahmad, H., Tchier, F., Zhao, Y.-H.: New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method. Open Phys. 21(1), 229 (2023)ADS
Zurück zum Zitat Khater, M.M.A.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(9), 2350083 (2023)ADSMathSciNet Khater, M.M.A.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(9), 2350083 (2023)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation. Eur. Phys. J. Plus 138(4), 320 (2023) Khater, M.M.A.: In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation. Eur. Phys. J. Plus 138(4), 320 (2023)
Zurück zum Zitat Khater, M.M.A.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solitons Fractals 169, 113232 (2023)MathSciNet Khater, M.M.A.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solitons Fractals 169, 113232 (2023)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Abundant and accurate computational wave structures of the nonlinear fractional biological population model. Int. J. Mod. Phys. B 37(18), 2350176 (2023)ADS Khater, M.M.A.: Abundant and accurate computational wave structures of the nonlinear fractional biological population model. Int. J. Mod. Phys. B 37(18), 2350176 (2023)ADS
Zurück zum Zitat Khater, M.M.A.: Advancements in computational techniques for precise solitary wave solutions in the (1 + 1)-dimensional Mikhailov–Novikov–Wang equation. Int. J. Theor. Phys. 62(7), 152 (2023)MathSciNet Khater, M.M.A.: Advancements in computational techniques for precise solitary wave solutions in the (1 + 1)-dimensional Mikhailov–Novikov–Wang equation. Int. J. Theor. Phys. 62(7), 152 (2023)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Numerous accurate and stable solitary wave solutions to the generalized modified equal-width equation. Int. J. Theor. Phys. 62(7), 151 (2023)ADSMathSciNet Khater, M.M.A.: Numerous accurate and stable solitary wave solutions to the generalized modified equal-width equation. Int. J. Theor. Phys. 62(7), 151 (2023)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: Horizontal stratification of fluids and the behavior of long waves. Eur. Phys. J. Plus 138(8), 715 (2023) Khater, M.M.A.: Horizontal stratification of fluids and the behavior of long waves. Eur. Phys. J. Plus 138(8), 715 (2023)
Zurück zum Zitat Khater, M.M.A.: Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations. Chaos Solitons Fractals 173, 113652 (2023)MathSciNet Khater, M.M.A.: Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations. Chaos Solitons Fractals 173, 113652 (2023)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Results Phys. 44, 106193 (2023) Khater, M.M.A.: Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Results Phys. 44, 106193 (2023)
Zurück zum Zitat Khater, M.M.A.: Soliton propagation under diffusive and nonlinear effects in physical systems; (1+1)-dimensional MNW integrable equation. Phys. Lett. A 480, 128945 (2023)MathSciNet Khater, M.M.A.: Soliton propagation under diffusive and nonlinear effects in physical systems; (1+1)-dimensional MNW integrable equation. Phys. Lett. A 480, 128945 (2023)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Computational simulations of propagation of a tsunami wave across the ocean. Chaos Solitons Fractals 174, 113806 (2023)MathSciNet Khater, M.M.A.: Computational simulations of propagation of a tsunami wave across the ocean. Chaos Solitons Fractals 174, 113806 (2023)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Physical and dynamic characteristics of high-amplitude ultrasonic wave propagation in nonlinear and dissipative media. Mod. Phys. Lett. B 37(36), 2350210 (2023)ADSMathSciNet Khater, M.M.A.: Physical and dynamic characteristics of high-amplitude ultrasonic wave propagation in nonlinear and dissipative media. Mod. Phys. Lett. B 37(36), 2350210 (2023)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen–Lee–Liu equation. Mod. Phys. Lett. B 37(34), 2350177 (2023)ADSMathSciNet Khater, M.M.A.: Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen–Lee–Liu equation. Mod. Phys. Lett. B 37(34), 2350177 (2023)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: Hybrid accurate simulations for constructing some novel analytical and numerical solutions of three-order GNLS equation. Int. J. Geomet. Methods Modern Phys. 20(9), 2350159–23512 (2023)ADSMathSciNet Khater, M.M.A.: Hybrid accurate simulations for constructing some novel analytical and numerical solutions of three-order GNLS equation. Int. J. Geomet. Methods Modern Phys. 20(9), 2350159–23512 (2023)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023) Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023)
Zurück zum Zitat Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solitons Fractals 167, 113098 (2023)MathSciNet Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solitons Fractals 167, 113098 (2023)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023) Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023)
Zurück zum Zitat Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solitons Fractals 167, 113098 (2023)MathSciNet Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solitons Fractals 167, 113098 (2023)MathSciNet
Zurück zum Zitat Khater, M.M.A.: In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37(7), 2350068–139 (2023)ADS Khater, M.M.A.: In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37(7), 2350068–139 (2023)ADS
Zurück zum Zitat Khater, M.M.A.: Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int. J. Mod. Phys. B 37(8), 2350071 (2023)ADS Khater, M.M.A.: Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int. J. Mod. Phys. B 37(8), 2350071 (2023)ADS
Zurück zum Zitat Klehfoth, M.G., Wald, R.M.: Local and covariant flow relations for OPE coefficients in Lorentzian spacetimes. Commun. Math. Phys. 403(1), 181–274 (2023)ADSMathSciNet Klehfoth, M.G., Wald, R.M.: Local and covariant flow relations for OPE coefficients in Lorentzian spacetimes. Commun. Math. Phys. 403(1), 181–274 (2023)ADSMathSciNet
Zurück zum Zitat Li, X., Sheng, Z., Zhang, L.: High-order Lagrange multiplier method for the coupled Klein–Gordon–Schrödinger system. J. Comput. Phys. 493, 112456 (2023)MathSciNet Li, X., Sheng, Z., Zhang, L.: High-order Lagrange multiplier method for the coupled Klein–Gordon–Schrödinger system. J. Comput. Phys. 493, 112456 (2023)MathSciNet
Zurück zum Zitat Mahmud, A.A., Baskonus, H.M., Tanriverdi, T., Muhamad, K.A.: Optical solitary waves and soliton solutions of the (3+1)-dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation. Comput. Math. Math. Phys. 63(6), 1085–1102 (2023)MathSciNet Mahmud, A.A., Baskonus, H.M., Tanriverdi, T., Muhamad, K.A.: Optical solitary waves and soliton solutions of the (3+1)-dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation. Comput. Math. Math. Phys. 63(6), 1085–1102 (2023)MathSciNet
Zurück zum Zitat Maireche, A.: Improved energy spectra of the deformed Klein–Gordon and Schrödinger equations under the improved Varshni plus modified Kratzer potential model in the 3D-ERQM and 3D-ENRQM symmetries. Indian J. Phys. 97(12), 3567–3579 (2023)ADS Maireche, A.: Improved energy spectra of the deformed Klein–Gordon and Schrödinger equations under the improved Varshni plus modified Kratzer potential model in the 3D-ERQM and 3D-ENRQM symmetries. Indian J. Phys. 97(12), 3567–3579 (2023)ADS
Zurück zum Zitat Mamun, A.-A., Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 41, 105969 (2022) Mamun, A.-A., Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 41, 105969 (2022)
Zurück zum Zitat Pedram, L., Rostamy, D.: Numerical simulations of stochastic conformable space-time fractional Korteweg-de Vries and Benjamin–Bona–Mahony equations. Nonlinear Eng. 10(1), 77–90 (2021)ADS Pedram, L., Rostamy, D.: Numerical simulations of stochastic conformable space-time fractional Korteweg-de Vries and Benjamin–Bona–Mahony equations. Nonlinear Eng. 10(1), 77–90 (2021)ADS
Zurück zum Zitat Sarwar, A., Gang, T., Arshad, M., Ahmed, I.: Construction of bright-dark solitary waves and elliptic function solutions of space-time fractional partial differential equations and their applications. Phys. Scr. 95(4), 045227 (2020)ADS Sarwar, A., Gang, T., Arshad, M., Ahmed, I.: Construction of bright-dark solitary waves and elliptic function solutions of space-time fractional partial differential equations and their applications. Phys. Scr. 95(4), 045227 (2020)ADS
Zurück zum Zitat Shafqat-Ur-Rehman, M., Bilal, J.: Ahmad, New exact solitary wave solutions for the 3D-FWBBM model in arising shallow water waves by two analytical methods. Results Phys. 25, 104230 (2021) Shafqat-Ur-Rehman, M., Bilal, J.: Ahmad, New exact solitary wave solutions for the 3D-FWBBM model in arising shallow water waves by two analytical methods. Results Phys. 25, 104230 (2021)
Zurück zum Zitat Shakeel, M., Manan, A., Bin Turki, N., Shah, N.A., Tag, S.M.: Novel analytical technique to find diversity of solitary wave solutions for Wazwaz–Benjamin–Bona Mahony equations of fractional order. Results Phys. 51, 106671 (2023) Shakeel, M., Manan, A., Bin Turki, N., Shah, N.A., Tag, S.M.: Novel analytical technique to find diversity of solitary wave solutions for Wazwaz–Benjamin–Bona Mahony equations of fractional order. Results Phys. 51, 106671 (2023)
Zurück zum Zitat Shakeel, M., Attaullah, Turki, N. Bin., Shah, N. Ali., Tag, S.M.: Diversity of soliton solutions to the (3 + 1)-dimensional Wazwaz–Benjamin–Bona–Mahony equations arising in mathematical physics. Results Phys. 51, 106624 (2023) Shakeel, M., Attaullah, Turki, N. Bin., Shah, N. Ali., Tag, S.M.: Diversity of soliton solutions to the (3 + 1)-dimensional Wazwaz–Benjamin–Bona–Mahony equations arising in mathematical physics. Results Phys. 51, 106624 (2023)
Zurück zum Zitat Wang, K.-J., Si, J., Wang, G.D., Shi, F.: A new fractal modified Benjamin–Bona equation: its generalized variational principle and abundant exact solutions. Fractals 31(5), 2350047–977 (2023)ADS Wang, K.-J., Si, J., Wang, G.D., Shi, F.: A new fractal modified Benjamin–Bona equation: its generalized variational principle and abundant exact solutions. Fractals 31(5), 2350047–977 (2023)ADS
Zurück zum Zitat Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Althobaiti, S.: Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney–Luke integrable models. Open Phys. 19(1), 100 (2021)ADS Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Althobaiti, S.: Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney–Luke integrable models. Open Phys. 19(1), 100 (2021)ADS
Metadaten
Titel
Beyond the surface: mathematical insights into water waves and quantum fields
verfasst von
Yuanjian Lin
Mostafa M. A. Khater
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06578-2

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt