Skip to main content
Erschienen in: Computational Mechanics 4/2020

03.08.2020 | Original Paper

Bi-fidelity stochastic gradient descent for structural optimization under uncertainty

verfasst von: Subhayan De, Kurt Maute, Alireza Doostan

Erschienen in: Computational Mechanics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The presence of uncertainty in material properties and geometry of a structure is ubiquitous. The design of robust engineering structures, therefore, needs to incorporate uncertainty in the optimization process. Stochastic gradient descent (SGD) method can alleviate the cost of optimization under uncertainty, which includes statistical moments of quantities of interest in the objective and constraints. However, the design may change considerably during the initial iterations of the optimization process which impedes the convergence of the traditional SGD method and its variants. In this paper, we present two SGD based algorithms, where the computational cost is reduced by employing a low-fidelity model in the optimization process. In the first algorithm, most of the stochastic gradient calculations are performed on the low-fidelity model and only a handful of gradients from the high-fidelity model is used per iteration, resulting in an improved convergence. In the second algorithm, we use gradients from the low-fidelity models to be used as control variate, a variance reduction technique, to reduce the variance in the search direction. These two bi-fidelity algorithms are illustrated first with a conceptual example. Then, the convergence of the proposed bi-fidelity algorithms is studied with two numerical examples of shape and topology optimization and compared to popular variants of the SGD method that do not use low-fidelity models. The results show that the proposed use of a bi-fidelity approach for the SGD method can improve the convergence. Two analytical proofs are also provided that show linear convergence of these two algorithms under appropriate assumptions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A function \(J({{\varvec{\theta }}})\) is strongly convex with a constant \(\mu \) if \(J({{\varvec{\theta }}})-\frac{\mu }{2}\Vert {{\varvec{\theta }}}\Vert ^2\) is convex.
 
Literatur
1.
Zurück zum Zitat Allaire D, Willcox K, Toupet O (2010) A Bayesian-based approach to multifidelity multidisciplinary design optimization. In: 13th AIAA/ISSMO multidisciplinary analysis optimization conference, p 9183 Allaire D, Willcox K, Toupet O (2010) A Bayesian-based approach to multifidelity multidisciplinary design optimization. In: 13th AIAA/ISSMO multidisciplinary analysis optimization conference, p 9183
2.
Zurück zum Zitat Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FENiCS project version 1.5. Arch Numer Softw 3(100):9–23 Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FENiCS project version 1.5. Arch Numer Softw 3(100):9–23
3.
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in Matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16MATHCrossRef Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in Matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16MATHCrossRef
4.
Zurück zum Zitat Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034MathSciNetMATHCrossRef Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034MathSciNetMATHCrossRef
5.
Zurück zum Zitat Bakr MH, Bandler JW, Madsen K, Søndergaard J (2000) Review of the space mapping approach to engineering optimization and modeling. Optim Eng 1(3):241–276MathSciNetMATHCrossRef Bakr MH, Bandler JW, Madsen K, Søndergaard J (2000) Review of the space mapping approach to engineering optimization and modeling. Optim Eng 1(3):241–276MathSciNetMATHCrossRef
6.
Zurück zum Zitat Bakr MH, Bandler JW, Madsen K, Søndergaard J (2001) An introduction to the space mapping technique. Optim Eng 2(4):369–384MathSciNetMATHCrossRef Bakr MH, Bandler JW, Madsen K, Søndergaard J (2001) An introduction to the space mapping technique. Optim Eng 2(4):369–384MathSciNetMATHCrossRef
7.
Zurück zum Zitat Bandler JW, Biernacki RM, Chen SH, Grobelny PA, Hemmers RH (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Tech 42(12):2536–2544CrossRef Bandler JW, Biernacki RM, Chen SH, Grobelny PA, Hemmers RH (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Tech 42(12):2536–2544CrossRef
8.
Zurück zum Zitat Bendøse M, Sigmund O (2003) Topology optimization: theory, methods and applications. ISBN: 3-540-42992-1 Bendøse M, Sigmund O (2003) Topology optimization: theory, methods and applications. ISBN: 3-540-42992-1
9.
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
10.
Zurück zum Zitat Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab Eng Mech 25(2):183–197CrossRef Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab Eng Mech 25(2):183–197CrossRef
11.
Zurück zum Zitat Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17(1):1–13CrossRef Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17(1):1–13CrossRef
12.
Zurück zum Zitat Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Springer, pp 177–186 Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Springer, pp 177–186
13.
15.
Zurück zum Zitat Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeMATHCrossRef Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeMATHCrossRef
16.
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459MATHCrossRef Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459MATHCrossRef
17.
Zurück zum Zitat Bulleit WM (2008) Uncertainty in structural engineering. Pract Period Struct Des Construct 13(1):24–30CrossRef Bulleit WM (2008) Uncertainty in structural engineering. Pract Period Struct Des Construct 13(1):24–30CrossRef
18.
Zurück zum Zitat Calafiore GC, Dabbene F (2008) Optimization under uncertainty with applications to design of truss structures. Struct Multidiscip Optim 35(3):189–200MathSciNetMATHCrossRef Calafiore GC, Dabbene F (2008) Optimization under uncertainty with applications to design of truss structures. Struct Multidiscip Optim 35(3):189–200MathSciNetMATHCrossRef
19.
Zurück zum Zitat Chen SH, Yang XW, Wu BS (2000) Static displacement reanalysis of structures using perturbation and pade approximation. Commun Numer Methods Eng 16(2):75–82MATHCrossRef Chen SH, Yang XW, Wu BS (2000) Static displacement reanalysis of structures using perturbation and pade approximation. Commun Numer Methods Eng 16(2):75–82MATHCrossRef
20.
Zurück zum Zitat Choi S, Alonso JJ, Kroo IM, Wintzer M (2008) Multifidelity design optimization of low-boom supersonic jets. J Aircr 45(1):106–118CrossRef Choi S, Alonso JJ, Kroo IM, Wintzer M (2008) Multifidelity design optimization of low-boom supersonic jets. J Aircr 45(1):106–118CrossRef
21.
Zurück zum Zitat Christensen DE (2012) Multifidelity methods for multidisciplinary design under uncertainty. Master’s thesis, Massachusetts Institute of Technology Christensen DE (2012) Multifidelity methods for multidisciplinary design under uncertainty. Master’s thesis, Massachusetts Institute of Technology
22.
Zurück zum Zitat De S, Hampton J, Maute K, Doostan A (2020) Topology optimization under uncertainty using a stochastic gradient-based approach. Struct Multidiscip Optim (accepted) De S, Hampton J, Maute K, Doostan A (2020) Topology optimization under uncertainty using a stochastic gradient-based approach. Struct Multidiscip Optim (accepted)
23.
Zurück zum Zitat De S, Wojtkiewicz SF, Johnson EA (2017) Efficient optimal design and design-under-uncertainty of passive control devices with application to a cable-stayed bridge. Struct Control Health Monit 24(2):e1846CrossRef De S, Wojtkiewicz SF, Johnson EA (2017) Efficient optimal design and design-under-uncertainty of passive control devices with application to a cable-stayed bridge. Struct Control Health Monit 24(2):e1846CrossRef
24.
Zurück zum Zitat Defazio A, Bottou L (2018) On the ineffectiveness of variance reduced optimization for deep learning. ArXiv preprint arXiv:1812.04529 Defazio A, Bottou L (2018) On the ineffectiveness of variance reduced optimization for deep learning. ArXiv preprint arXiv:​1812.​04529
25.
Zurück zum Zitat Diwekar U (2008) Optimization under uncertainty. In: Introduction to applied optimization. Springer, pp 1–54 Diwekar U (2008) Optimization under uncertainty. In: Introduction to applied optimization. Springer, pp 1–54
26.
Zurück zum Zitat Diwekar UM, Kalagnanam JR (1997) Efficient sampling technique for optimization under uncertainty. AIChE J 43(2):440–447CrossRef Diwekar UM, Kalagnanam JR (1997) Efficient sampling technique for optimization under uncertainty. AIChE J 43(2):440–447CrossRef
27.
Zurück zum Zitat Doostan A, Geraci G, Iaccarino G (2016) A bi-fidelity approach for uncertainty quantification of heat transfer in a rectangular ribbed channel. In: ASME turbo expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V02CT45A031 Doostan A, Geraci G, Iaccarino G (2016) A bi-fidelity approach for uncertainty quantification of heat transfer in a rectangular ribbed channel. In: ASME turbo expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V02CT45A031
28.
Zurück zum Zitat Doostan A, Owhadi H (2011) A non-adapted sparse approximation of PDE with stochastic inputs. J Comput Phys 230(8):3015–3034MathSciNetMATHCrossRef Doostan A, Owhadi H (2011) A non-adapted sparse approximation of PDE with stochastic inputs. J Comput Phys 230(8):3015–3034MathSciNetMATHCrossRef
29.
Zurück zum Zitat Doostan A, Owhadi H, Lashgari A, Iaccarino G (2009) Non-adapted sparse approximation of PDEs with stochastic inputs. Technical report annual research brief, Center for Turbulence Research, Stanford University Doostan A, Owhadi H, Lashgari A, Iaccarino G (2009) Non-adapted sparse approximation of PDEs with stochastic inputs. Technical report annual research brief, Center for Turbulence Research, Stanford University
30.
Zurück zum Zitat Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7):2121–2159MathSciNetMATH Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7):2121–2159MathSciNetMATH
31.
Zurück zum Zitat Eldred M, Dunlavy D (2006) Formulations for surrogate-based optimization with data fit, multifidelity, and reduced-order models. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 7117 Eldred M, Dunlavy D (2006) Formulations for surrogate-based optimization with data fit, multifidelity, and reduced-order models. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 7117
32.
Zurück zum Zitat Eldred MS, Elman HC (2011) Design under uncertainty employing stochastic expansion methods. Int J Uncertain Quantif 1(2):119–146 Eldred MS, Elman HC (2011) Design under uncertainty employing stochastic expansion methods. Int J Uncertain Quantif 1(2):119–146
33.
Zurück zum Zitat Fairbanks HR, Doostan A, Ketelsen C, Iaccarino G (2017) A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems. J Comput Phys 341:121–139MathSciNetMATHCrossRef Fairbanks HR, Doostan A, Ketelsen C, Iaccarino G (2017) A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems. J Comput Phys 341:121–139MathSciNetMATHCrossRef
34.
Zurück zum Zitat Fairbanks HR, Jofre L, Geraci G, Iaccarino G, Doostan A (2018) Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence. ArXiv preprint arXiv:1808.05742 Fairbanks HR, Jofre L, Geraci G, Iaccarino G, Doostan A (2018) Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence. ArXiv preprint arXiv:​1808.​05742
35.
36.
Zurück zum Zitat Fischer CC, Grandhi RV, Beran PS (2017) Bayesian low-fidelity correction approach to multi-fidelity aerospace design. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 0133 Fischer CC, Grandhi RV, Beran PS (2017) Bayesian low-fidelity correction approach to multi-fidelity aerospace design. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 0133
37.
Zurück zum Zitat Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Lond A Math Phys Eng Sci 463(2088):3251–3269MathSciNetMATH Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Lond A Math Phys Eng Sci 463(2088):3251–3269MathSciNetMATH
38.
Zurück zum Zitat Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Dover publications, New YorkMATH Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Dover publications, New YorkMATH
39.
Zurück zum Zitat Gorodetsky AA, Geraci G, Eldred MS, Jakeman JD (2020) A generalized approximate control variate framework for multifidelity uncertainty quantification. J Comput Phys 408:109257MathSciNetCrossRef Gorodetsky AA, Geraci G, Eldred MS, Jakeman JD (2020) A generalized approximate control variate framework for multifidelity uncertainty quantification. J Comput Phys 408:109257MathSciNetCrossRef
40.
Zurück zum Zitat Hammersley J (2013) Monte Carlo methods. Springer, Berlin Hammersley J (2013) Monte Carlo methods. Springer, Berlin
41.
Zurück zum Zitat Hampton J, Doostan A (2016) Compressive sampling methods for sparse polynomial chaos expansions. Handbook of uncertainty quantification, pp 1–29 Hampton J, Doostan A (2016) Compressive sampling methods for sparse polynomial chaos expansions. Handbook of uncertainty quantification, pp 1–29
42.
43.
Zurück zum Zitat Hampton J, Fairbanks HR, Narayan A, Doostan A (2018) Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction. J Comput Phys 368:315–332MathSciNetMATHCrossRef Hampton J, Fairbanks HR, Narayan A, Doostan A (2018) Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction. J Comput Phys 368:315–332MathSciNetMATHCrossRef
44.
Zurück zum Zitat Hasselman T (2001) Quantification of uncertainty in structural dynamic models. J Aerosp Eng 14(4):158–165CrossRef Hasselman T (2001) Quantification of uncertainty in structural dynamic models. J Aerosp Eng 14(4):158–165CrossRef
45.
Zurück zum Zitat Henson VE, Briggs WL, McCormick SF (2000) A multigrid tutorial. Society for Industrial and Applied Mathematics, PhiladelphiaMATH Henson VE, Briggs WL, McCormick SF (2000) A multigrid tutorial. Society for Industrial and Applied Mathematics, PhiladelphiaMATH
46.
Zurück zum Zitat Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATHCrossRef Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATHCrossRef
47.
Zurück zum Zitat Huang D, Allen TT, Notz WI, Miller RA (2006) Sequential kriging optimization using multiple-fidelity evaluations. Struct Multidiscip Optim 32(5):369–382CrossRef Huang D, Allen TT, Notz WI, Miller RA (2006) Sequential kriging optimization using multiple-fidelity evaluations. Struct Multidiscip Optim 32(5):369–382CrossRef
48.
Zurück zum Zitat Hurtado JE (2002) Reanalysis of linear and nonlinear structures using iterated Shanks transformation. Comput Methods Appl Mech Eng 191(37–38):4215–4229MATHCrossRef Hurtado JE (2002) Reanalysis of linear and nonlinear structures using iterated Shanks transformation. Comput Methods Appl Mech Eng 191(37–38):4215–4229MATHCrossRef
49.
Zurück zum Zitat Jin R, Du X, Chen W (2003) The use of metamodeling techniques for optimization under uncertainty. Struct Multidiscip Optim 25(2):99–116CrossRef Jin R, Du X, Chen W (2003) The use of metamodeling techniques for optimization under uncertainty. Struct Multidiscip Optim 25(2):99–116CrossRef
50.
Zurück zum Zitat Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in neural information processing systems, pp 315–323 Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in neural information processing systems, pp 315–323
51.
Zurück zum Zitat Keane A (2003) Wing optimization using design of experiment, response surface, and data fusion methods. J Aircr 40(4):741–750CrossRef Keane A (2003) Wing optimization using design of experiment, response surface, and data fusion methods. J Aircr 40(4):741–750CrossRef
52.
Zurück zum Zitat Keane AJ (2012) Cokriging for robust design optimization. AIAA J 50(11):2351–2364CrossRef Keane AJ (2012) Cokriging for robust design optimization. AIAA J 50(11):2351–2364CrossRef
53.
55.
Zurück zum Zitat Kirsch U (2000) Combined approximations-a general reanalysis approach for structural optimization. Struct Multidiscip Optim 20(2):97–106CrossRef Kirsch U (2000) Combined approximations-a general reanalysis approach for structural optimization. Struct Multidiscip Optim 20(2):97–106CrossRef
56.
Zurück zum Zitat Koutsourelakis P-S (2009) Accurate uncertainty quantification using inaccurate computational models. SIAM J Sci Comput 31(5):3274–3300MathSciNetMATHCrossRef Koutsourelakis P-S (2009) Accurate uncertainty quantification using inaccurate computational models. SIAM J Sci Comput 31(5):3274–3300MathSciNetMATHCrossRef
57.
Zurück zum Zitat Koziel S, Tesfahunegn Y, Amrit A, Leifsson LT (2016) Rapid multi-objective aerodynamic design using co-kriging and space mapping. In: 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 0418 Koziel S, Tesfahunegn Y, Amrit A, Leifsson LT (2016) Rapid multi-objective aerodynamic design using co-kriging and space mapping. In: 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 0418
58.
Zurück zum Zitat Kroo I, Willcox K, March A, Haas A, Rajnarayan D, Kays C (2010) Multifidelity analysis and optimization for supersonic design. Technical report CR-2010-216874, NASA Kroo I, Willcox K, March A, Haas A, Rajnarayan D, Kays C (2010) Multifidelity analysis and optimization for supersonic design. Technical report CR-2010-216874, NASA
59.
Zurück zum Zitat Logg A, Mardal K-A, Wells GN et al (2012) Automated solution of differential equations by the finite element method. Springer, BerlinMATHCrossRef Logg A, Mardal K-A, Wells GN et al (2012) Automated solution of differential equations by the finite element method. Springer, BerlinMATHCrossRef
60.
Zurück zum Zitat Luenberger DG, Ye Y (1984) Linear and nonlinear programming, vol 2. Springer, BerlinMATH Luenberger DG, Ye Y (1984) Linear and nonlinear programming, vol 2. Springer, BerlinMATH
61.
Zurück zum Zitat March A, Willcox K (2012a) Constrained multifidelity optimization using model calibration. Struct Multidiscip Optim 46(1):93–109MATHCrossRef March A, Willcox K (2012a) Constrained multifidelity optimization using model calibration. Struct Multidiscip Optim 46(1):93–109MATHCrossRef
62.
Zurück zum Zitat March A, Willcox K (2012b) Provably convergent multifidelity optimization algorithm not requiring high-fidelity derivatives. AIAA J 50(5):1079–1089CrossRef March A, Willcox K (2012b) Provably convergent multifidelity optimization algorithm not requiring high-fidelity derivatives. AIAA J 50(5):1079–1089CrossRef
63.
Zurück zum Zitat March A, Willcox K, Wang Q (2011) Gradient-based multifidelity optimisation for aircraft design using Bayesian model calibration. Aeronaut J 115(1174):729–738CrossRef March A, Willcox K, Wang Q (2011) Gradient-based multifidelity optimisation for aircraft design using Bayesian model calibration. Aeronaut J 115(1174):729–738CrossRef
64.
Zurück zum Zitat Martin JD, Simpson TW (2005) Use of kriging models to approximate deterministic computer models. AIAA J 43(4):853–863CrossRef Martin JD, Simpson TW (2005) Use of kriging models to approximate deterministic computer models. AIAA J 43(4):853–863CrossRef
65.
Zurück zum Zitat Maute K, Pettit CL (2006) Uncertainty quantification and design under uncertainty of aerospace systems. Struct Infrastruct Eng 2(3–4):159–159 Maute K, Pettit CL (2006) Uncertainty quantification and design under uncertainty of aerospace systems. Struct Infrastruct Eng 2(3–4):159–159
67.
Zurück zum Zitat Narayan A, Gittelson C, Xiu D (2014) A stochastic collocation algorithm with multifidelity models. SIAM J Sci Comput 36(2):A495–A521MathSciNetMATHCrossRef Narayan A, Gittelson C, Xiu D (2014) A stochastic collocation algorithm with multifidelity models. SIAM J Sci Comput 36(2):A495–A521MathSciNetMATHCrossRef
68.
Zurück zum Zitat Nemirovski A, Juditsky A, Lan G, Shapiro A (2009) Robust stochastic approximation approach to stochastic programming. SIAM J Optim 19(4):1574–1609MathSciNetMATHCrossRef Nemirovski A, Juditsky A, Lan G, Shapiro A (2009) Robust stochastic approximation approach to stochastic programming. SIAM J Optim 19(4):1574–1609MathSciNetMATHCrossRef
69.
Zurück zum Zitat Ng LW, Willcox KE (2014) Multifidelity approaches for optimization under uncertainty. Int J Numer Methods Eng 100(10):746–772MathSciNetMATHCrossRef Ng LW, Willcox KE (2014) Multifidelity approaches for optimization under uncertainty. Int J Numer Methods Eng 100(10):746–772MathSciNetMATHCrossRef
70.
Zurück zum Zitat Ng LW-T, Eldred M (2012) Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, p 1852 Ng LW-T, Eldred M (2012) Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, p 1852
71.
Zurück zum Zitat Nobile F, Tempone R, Webster CG (2008) A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal 46(5):2309–2345MathSciNetMATHCrossRef Nobile F, Tempone R, Webster CG (2008) A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal 46(5):2309–2345MathSciNetMATHCrossRef
72.
Zurück zum Zitat Nocedal J, Wright S (2006) Numerical optimization. Springer, BerlinMATH Nocedal J, Wright S (2006) Numerical optimization. Springer, BerlinMATH
73.
Zurück zum Zitat Padron AS, Alonso JJ, Eldred MS (2016) Multi-fidelity methods in aerodynamic robust optimization. In: 18th AIAA non-deterministic approaches conference, p 0680 Padron AS, Alonso JJ, Eldred MS (2016) Multi-fidelity methods in aerodynamic robust optimization. In: 18th AIAA non-deterministic approaches conference, p 0680
74.
Zurück zum Zitat Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55(3):1029–1050MathSciNetCrossRef Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55(3):1029–1050MathSciNetCrossRef
75.
Zurück zum Zitat Parussini L, Venturi D, Perdikaris P, Karniadakis GE (2017) Multi-fidelity Gaussian process regression for prediction of random fields. J Comput Phys 336:36–50MathSciNetMATHCrossRef Parussini L, Venturi D, Perdikaris P, Karniadakis GE (2017) Multi-fidelity Gaussian process regression for prediction of random fields. J Comput Phys 336:36–50MathSciNetMATHCrossRef
76.
Zurück zum Zitat Pasupathy R, Schmeiser BW, Taaffe MR, Wang J (2012) Control-variate estimation using estimated control means. IIE Trans 44(5):381–385CrossRef Pasupathy R, Schmeiser BW, Taaffe MR, Wang J (2012) Control-variate estimation using estimated control means. IIE Trans 44(5):381–385CrossRef
77.
Zurück zum Zitat Peherstorfer B, Cui T, Marzouk Y, Willcox K (2016) Multifidelity importance sampling. Comput Methods Appl Mech Eng 300:490–509MathSciNetMATHCrossRef Peherstorfer B, Cui T, Marzouk Y, Willcox K (2016) Multifidelity importance sampling. Comput Methods Appl Mech Eng 300:490–509MathSciNetMATHCrossRef
78.
Zurück zum Zitat Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev 60(3):550–591MathSciNetMATHCrossRef Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev 60(3):550–591MathSciNetMATHCrossRef
79.
Zurück zum Zitat Perdikaris P, Venturi D, Royset JO, Karniadakis GE (2015) Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields. Proc R Soc A Math Phys Eng Sci 471(2179):20150018 Perdikaris P, Venturi D, Royset JO, Karniadakis GE (2015) Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields. Proc R Soc A Math Phys Eng Sci 471(2179):20150018
80.
Zurück zum Zitat Qian PZ, Wu CJ (2008) Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50(2):192–204MathSciNetCrossRef Qian PZ, Wu CJ (2008) Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50(2):192–204MathSciNetCrossRef
82.
Zurück zum Zitat Robinson T, Eldred M, Willcox K, Haimes R (2008) Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. AIAA J 46(11):2814–2822CrossRef Robinson T, Eldred M, Willcox K, Haimes R (2008) Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. AIAA J 46(11):2814–2822CrossRef
83.
Zurück zum Zitat Ross SM (2013) Simulation, 5th edn. Academic Press, CambridgeMATH Ross SM (2013) Simulation, 5th edn. Academic Press, CambridgeMATH
84.
Zurück zum Zitat Roux NL, Schmidt M, Bach FR (2012) A stochastic gradient method with an exponential convergence rate for finite training sets. In: Advances in neural information processing systems, pp 2663–2671 Roux NL, Schmidt M, Bach FR (2012) A stochastic gradient method with an exponential convergence rate for finite training sets. In: Advances in neural information processing systems, pp 2663–2671
85.
Zurück zum Zitat Rubinstein RY, Kroese DP (2016) Simulation and the Monte Carlo method, vol 10. Wiley, New YorkMATHCrossRef Rubinstein RY, Kroese DP (2016) Simulation and the Monte Carlo method, vol 10. Wiley, New YorkMATHCrossRef
87.
Zurück zum Zitat Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28(6–7):971–983CrossRef Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28(6–7):971–983CrossRef
88.
Zurück zum Zitat Sandgren E, Cameron TM (2002) Robust design optimization of structures through consideration of variation. Comput Struct 80(20–21):1605–1613CrossRef Sandgren E, Cameron TM (2002) Robust design optimization of structures through consideration of variation. Comput Struct 80(20–21):1605–1613CrossRef
89.
Zurück zum Zitat Sandridge CA, Haftka RT (1989) Accuracy of eigenvalue derivatives from reduced-order structural models. J Guid Control Dyn 12(6):822–829CrossRef Sandridge CA, Haftka RT (1989) Accuracy of eigenvalue derivatives from reduced-order structural models. J Guid Control Dyn 12(6):822–829CrossRef
90.
Zurück zum Zitat Schmidt M, Le Roux N, Bach F (2017) Minimizing finite sums with the stochastic average gradient. Math Program 162(1–2):83–112MathSciNetMATHCrossRef Schmidt M, Le Roux N, Bach F (2017) Minimizing finite sums with the stochastic average gradient. Math Program 162(1–2):83–112MathSciNetMATHCrossRef
91.
Zurück zum Zitat Senior A, Heigold G, Ranzato M, Yang K (2013) An empirical study of learning rates in deep neural networks for speech recognition. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 6724–6728 Senior A, Heigold G, Ranzato M, Yang K (2013) An empirical study of learning rates in deep neural networks for speech recognition. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 6724–6728
92.
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef
93.
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef
94.
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRef Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRef
95.
Zurück zum Zitat Skinner RW, Doostan A, Peters EL, Evans JA, Jansen KE (2019) Reduced-basis multifidelity approach for efficient parametric study of NACA airfoils. AIAA J 57:1481–1491CrossRef Skinner RW, Doostan A, Peters EL, Evans JA, Jansen KE (2019) Reduced-basis multifidelity approach for efficient parametric study of NACA airfoils. AIAA J 57:1481–1491CrossRef
96.
Zurück zum Zitat Spillers WR, MacBain KM (2009) Structural optimization. Springer, BerlinMATH Spillers WR, MacBain KM (2009) Structural optimization. Springer, BerlinMATH
97.
Zurück zum Zitat Wang C, Chen X, Smola AJ, Xing EP (2013) Variance reduction for stochastic gradient optimization. In: Advances in neural information processing systems, pp 181–189 Wang C, Chen X, Smola AJ, Xing EP (2013) Variance reduction for stochastic gradient optimization. In: Advances in neural information processing systems, pp 181–189
98.
Zurück zum Zitat Weickum G, Eldred M, Maute K (2006) Multi-point extended reduced order modeling for design optimization and uncertainty analysis. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 14th AIAA/ASME/AHS adaptive structures conference 7th, p 2145 Weickum G, Eldred M, Maute K (2006) Multi-point extended reduced order modeling for design optimization and uncertainty analysis. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 14th AIAA/ASME/AHS adaptive structures conference 7th, p 2145
99.
Zurück zum Zitat Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetMATHCrossRef Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetMATHCrossRef
100.
Zurück zum Zitat Yamazaki W, Rumpfkeil M, Mavriplis D (2010) Design optimization utilizing gradient/hessian enhanced surrogate model. In: 28th AIAA applied aerodynamics conference, p 4363 Yamazaki W, Rumpfkeil M, Mavriplis D (2010) Design optimization utilizing gradient/hessian enhanced surrogate model. In: 28th AIAA applied aerodynamics conference, p 4363
101.
Zurück zum Zitat Zang C, Friswell M, Mottershead J (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83(4–5):315–326CrossRef Zang C, Friswell M, Mottershead J (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83(4–5):315–326CrossRef
103.
Zurück zum Zitat Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336CrossRef Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336CrossRef
Metadaten
Titel
Bi-fidelity stochastic gradient descent for structural optimization under uncertainty
verfasst von
Subhayan De
Kurt Maute
Alireza Doostan
Publikationsdatum
03.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01870-w

Weitere Artikel der Ausgabe 4/2020

Computational Mechanics 4/2020 Zur Ausgabe