Skip to main content

2022 | OriginalPaper | Buchkapitel

9. Bio-Inspired Flexible Sensors for Flow Field Detection

verfasst von : Yonggang Jiang, Zhiqiang Ma, Dawei Shen

Erschienen in: Advanced MEMS/NEMS Fabrication and Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flow field detection plays a crucial role in flying and swimming robots by providing information for navigation, active flow control, and disturbance rejection in complex fluid environments. Nature creatures have evolved flow receptors with extreme sensing performances such as fish lateral line system and sensory hairs of insects, which inspire engineers to develop artificial flow sensors. With the introduction to the high-sensitive mechanisms in fish lateral line and sensory hairs, we focus on recent progress on bio-inspired flexible sensors, which can be mounted on curved surfaces for flow field detection and analysis. The engineered sensors have reached the detection limit comparable to that of the biological receptors, which is a great breakthrough for bio-inspired sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aiyar, A. R., Kim, S. H., & Allen, M. G. (2009). An all polymer air-flow sensor array using a piezoresistive composite elastomer. Smart Materials and Structures, 18, 115002.CrossRef Aiyar, A. R., Kim, S. H., & Allen, M. G. (2009). An all polymer air-flow sensor array using a piezoresistive composite elastomer. Smart Materials and Structures, 18, 115002.CrossRef
Zurück zum Zitat Alfadhel, A., Li, B., Zaher, A., Yassine, O., & Kosel, J. (2014). A magnetic nanocomposite for biomimetic flow sensing. Lab on a Chip, 14, 4362–4369.CrossRef Alfadhel, A., Li, B., Zaher, A., Yassine, O., & Kosel, J. (2014). A magnetic nanocomposite for biomimetic flow sensing. Lab on a Chip, 14, 4362–4369.CrossRef
Zurück zum Zitat Asadnia, M., Kottapalli, A. G. P., Karavitaki, K. D., Warkiani, M. E., Miao, J., Corey, D. P., & Triantafyllou, M. S. (2016). From biological cilia to artificial flow sensors: Biomimetic soft polymer nanosensors with high sensing performance. Scientific Reports, 6, 32955.CrossRef Asadnia, M., Kottapalli, A. G. P., Karavitaki, K. D., Warkiani, M. E., Miao, J., Corey, D. P., & Triantafyllou, M. S. (2016). From biological cilia to artificial flow sensors: Biomimetic soft polymer nanosensors with high sensing performance. Scientific Reports, 6, 32955.CrossRef
Zurück zum Zitat Barth, F. G. (2002). Spider senses—Technical perfection and biology. Zoology (Jena, Germany), 105, 271–285.CrossRef Barth, F. G. (2002). Spider senses—Technical perfection and biology. Zoology (Jena, Germany), 105, 271–285.CrossRef
Zurück zum Zitat Barth, F. G. (2004). Spider mechanoreceptors. Current Opinion in Neurobiology, 14, 415–422.CrossRef Barth, F. G. (2004). Spider mechanoreceptors. Current Opinion in Neurobiology, 14, 415–422.CrossRef
Zurück zum Zitat Barth, F. G., Wastl, U., et al. (1993). Dynamics of arthropod filiform hairs. Ii. Mechanical properties of spider trichobothria (cupiennius salei keys). Philosophical Transactions: Biological Sciences, 340, 445–461.CrossRef Barth, F. G., Wastl, U., et al. (1993). Dynamics of arthropod filiform hairs. Ii. Mechanical properties of spider trichobothria (cupiennius salei keys). Philosophical Transactions: Biological Sciences, 340, 445–461.CrossRef
Zurück zum Zitat Bleckmann, H., Schmitz, H., & von der Emde, G. (2004). Nature as a model for technical sensors. Journal of Comparative Physiology. A, 190, 971–981.CrossRef Bleckmann, H., Schmitz, H., & von der Emde, G. (2004). Nature as a model for technical sensors. Journal of Comparative Physiology. A, 190, 971–981.CrossRef
Zurück zum Zitat Bora, M., Kottapalli, A. G. P., Miao, J., & Triantafyllou, M. S. (2017). Biomimetic hydrogel-CNT network induced enhancement of fluid-structure interactions for ultrasensitive nanosensors. NPG Asia Materials, 9, e440.CrossRef Bora, M., Kottapalli, A. G. P., Miao, J., & Triantafyllou, M. S. (2017). Biomimetic hydrogel-CNT network induced enhancement of fluid-structure interactions for ultrasensitive nanosensors. NPG Asia Materials, 9, e440.CrossRef
Zurück zum Zitat Bora, M., Giri, A., Kottapalli, P., Miao, J., & Triantafyllou, M. S. (2018). Sensing the flow beneath the fins. Bioinspiration & Biomimetics, 13, 025002.CrossRef Bora, M., Giri, A., Kottapalli, P., Miao, J., & Triantafyllou, M. S. (2018). Sensing the flow beneath the fins. Bioinspiration & Biomimetics, 13, 025002.CrossRef
Zurück zum Zitat Bruecker, C. (2016). Measurement of near-wall 3D flow velocity from wave-guiding micro-pillars. Optics Express, 24, 19.CrossRef Bruecker, C. (2016). Measurement of near-wall 3D flow velocity from wave-guiding micro-pillars. Optics Express, 24, 19.CrossRef
Zurück zum Zitat Casas, J., & Dangles, O. (2010). Physical ecology of fluid flow sensing in arthropods. Annual Review of Entomology, 55, 505–520.CrossRef Casas, J., & Dangles, O. (2010). Physical ecology of fluid flow sensing in arthropods. Annual Review of Entomology, 55, 505–520.CrossRef
Zurück zum Zitat Coombs, S., Görner, P., & Münz, H. (1989). The mechanosensory lateral line. Neurobiology and evolution. Springer Verlag.CrossRef Coombs, S., Görner, P., & Münz, H. (1989). The mechanosensory lateral line. Neurobiology and evolution. Springer Verlag.CrossRef
Zurück zum Zitat Coombs, S., Bleckmann, H., Fay, R. R., & Popper, A. N. (2014). The lateral line system. Springer.CrossRef Coombs, S., Bleckmann, H., Fay, R. R., & Popper, A. N. (2014). The lateral line system. Springer.CrossRef
Zurück zum Zitat Dagamseh, A. M. K., Bruinink, C. M., Wiegerink, R. J., Lammerink, T. S. J., Droogendijk, H., & Krijnen, G. J. M. (2013). Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity. Journal of Micromechanics and Microengineering, 23, 035010.CrossRef Dagamseh, A. M. K., Bruinink, C. M., Wiegerink, R. J., Lammerink, T. S. J., Droogendijk, H., & Krijnen, G. J. M. (2013). Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity. Journal of Micromechanics and Microengineering, 23, 035010.CrossRef
Zurück zum Zitat Denton, E. J., & Gray, J. A. B. (1988). Mechanical factors in the excitation of the lateral line of fishes. In Sensory Biology of Aquatic Animals (eds. Atema, J., Fay, R. R., Popper, A. N., Tavolga, W. N.), pp. 595–617. Springer, New York, USA. Denton, E. J., & Gray, J. A. B. (1988). Mechanical factors in the excitation of the lateral line of fishes. In Sensory Biology of Aquatic Animals (eds. Atema, J., Fay, R. R., Popper, A. N., Tavolga, W. N.), pp. 595–617. Springer, New York, USA.
Zurück zum Zitat Dickinson, B. T. (2010). Hair receptor sensitivity to changes in laminar boundary layer shape. Bioinspiration & Biomimetics, 5, 1–11.CrossRef Dickinson, B. T. (2010). Hair receptor sensitivity to changes in laminar boundary layer shape. Bioinspiration & Biomimetics, 5, 1–11.CrossRef
Zurück zum Zitat Han, Z., Liu, L., Wang, K., Song, H., Chen, D., Wang, Z., Niu, S., Zhang, J., & Ren, L. (2018). Artificial hair-like sensors inspired from nature: A review. Journal of Bionic Engineering, 15, 409–434.CrossRef Han, Z., Liu, L., Wang, K., Song, H., Chen, D., Wang, Z., Niu, S., Zhang, J., & Ren, L. (2018). Artificial hair-like sensors inspired from nature: A review. Journal of Bionic Engineering, 15, 409–434.CrossRef
Zurück zum Zitat Hu, X., Jiang, Y., Ma, Z., Xu, Y., & Zhang, D. (2019a). Bio-inspired flexible lateral line sensor based on P(VDF-TrFE)/BTO nanofiber mat for hydrodynamic perception. Sensors, 19, 5384.CrossRef Hu, X., Jiang, Y., Ma, Z., Xu, Y., & Zhang, D. (2019a). Bio-inspired flexible lateral line sensor based on P(VDF-TrFE)/BTO nanofiber mat for hydrodynamic perception. Sensors, 19, 5384.CrossRef
Zurück zum Zitat Hu, X. H., Yan, X., Gong, L. L., Wang, F. F., Xu, Y. H., Feng, L., Zhang, D. Y., & Jiang, Y. G. (2019b). Improved piezoelectric sensing performance of P(VDF-TrFE) nanofibers by utilizing BTO nanoparticles and penetrated electrodes. ACS Applied Materials & Interfaces, 11, 7379–7386.CrossRef Hu, X. H., Yan, X., Gong, L. L., Wang, F. F., Xu, Y. H., Feng, L., Zhang, D. Y., & Jiang, Y. G. (2019b). Improved piezoelectric sensing performance of P(VDF-TrFE) nanofibers by utilizing BTO nanoparticles and penetrated electrodes. ACS Applied Materials & Interfaces, 11, 7379–7386.CrossRef
Zurück zum Zitat Humphrey, J. A. C., & Barth, F. G. (2007). Medium flow-sensing hairs: Biomechanics and models. Advances in Insect Physiology, 34, 1–80.CrossRef Humphrey, J. A. C., & Barth, F. G. (2007). Medium flow-sensing hairs: Biomechanics and models. Advances in Insect Physiology, 34, 1–80.CrossRef
Zurück zum Zitat Jiang, Y. G., Fu, J. C., Zhang, D. Y., & Zhao, Y. H. (2016). Investigation on the lateral line systems of two cave fish: Sinocyclocheilus macrophthalmus and S. microphthalmus (Cypriniformes: Cyprinidae). Journal of Bionic Engineering, 13, 108–114.CrossRef Jiang, Y. G., Fu, J. C., Zhang, D. Y., & Zhao, Y. H. (2016). Investigation on the lateral line systems of two cave fish: Sinocyclocheilus macrophthalmus and S. microphthalmus (Cypriniformes: Cyprinidae). Journal of Bionic Engineering, 13, 108–114.CrossRef
Zurück zum Zitat Jiang, Y., Ma, Z., Fu, J., & Zhang, D. (2017). Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection. Sensors, 17, 1220.CrossRef Jiang, Y., Ma, Z., Fu, J., & Zhang, D. (2017). Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection. Sensors, 17, 1220.CrossRef
Zurück zum Zitat Jiang, Y., Ma, Z., & Zhang, D. (2019a). Flow field perception based on the fish lateral line system. Bioinspiration & Biomimetics, 14, 041001.CrossRef Jiang, Y., Ma, Z., & Zhang, D. (2019a). Flow field perception based on the fish lateral line system. Bioinspiration & Biomimetics, 14, 041001.CrossRef
Zurück zum Zitat Jiang, Y., Shen, D., et al. (2019b). Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown. Smart Materials and Structures, 28, 065028.CrossRef Jiang, Y., Shen, D., et al. (2019b). Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown. Smart Materials and Structures, 28, 065028.CrossRef
Zurück zum Zitat Kamat, A. M., Pei, Y., & Kottapalli, A. G. P. (2019). Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting. Nanomaterials, 9, 954.CrossRef Kamat, A. M., Pei, Y., & Kottapalli, A. G. P. (2019). Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting. Nanomaterials, 9, 954.CrossRef
Zurück zum Zitat Li, F., Liu, W., et al. (2010). A novel bioinspired PVDF micro/Nano hair receptor for a robot sensing system. Sensors, 10, 994–1011.CrossRef Li, F., Liu, W., et al. (2010). A novel bioinspired PVDF micro/Nano hair receptor for a robot sensing system. Sensors, 10, 994–1011.CrossRef
Zurück zum Zitat Liu, Y. F., Huang, P., Li, Y. Q., Liu, Q., Tao, J. K., Xiong, D. J., et al. (2019). A biomimetic multifunctional electronic hair sensor. Journal of Materials Chemistry A, 7, 1889.CrossRef Liu, Y. F., Huang, P., Li, Y. Q., Liu, Q., Tao, J. K., Xiong, D. J., et al. (2019). A biomimetic multifunctional electronic hair sensor. Journal of Materials Chemistry A, 7, 1889.CrossRef
Zurück zum Zitat Ma, Z., Jiang, Y., Wu, P., Xu, Y., Hu, X., Gong, Z., & Zhang, D. (2019). Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing. Bioinspiration & Biomimetics, 14, 066004.CrossRef Ma, Z., Jiang, Y., Wu, P., Xu, Y., Hu, X., Gong, Z., & Zhang, D. (2019). Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing. Bioinspiration & Biomimetics, 14, 066004.CrossRef
Zurück zum Zitat Ma, Z., Herzog, H., Jiang, Y., Zhao, Y., & Zhang, D. (2020a). Exquisite structure of the lateral line system in eyeless cavefish Sinocyclocheilus tianlinensis contrast to eyed Sinocyclocheilus macrophthalmus (Cypriniformes: Cyprinidae). Integrative Zoology, 15, 314–328.CrossRef Ma, Z., Herzog, H., Jiang, Y., Zhao, Y., & Zhang, D. (2020a). Exquisite structure of the lateral line system in eyeless cavefish Sinocyclocheilus tianlinensis contrast to eyed Sinocyclocheilus macrophthalmus (Cypriniformes: Cyprinidae). Integrative Zoology, 15, 314–328.CrossRef
Zurück zum Zitat Ma, Z., Jiang, Y., Dong, Z., Han, Z., & Zhang, D. (2020b). Hydrodynamic perception using an artificial lateral line device with an optimized constriction canal. Journal of Bionic Engineering, 17, 1–11.CrossRef Ma, Z., Jiang, Y., Dong, Z., Han, Z., & Zhang, D. (2020b). Hydrodynamic perception using an artificial lateral line device with an optimized constriction canal. Journal of Bionic Engineering, 17, 1–11.CrossRef
Zurück zum Zitat Ma, Z., Xu, Y., Jiang, Y., Hu, X., & Zhang, D. (2020c). BTO/P(VDF-TrFE) nanofiber-based artificial lateral line sensor with drag enhancement structures. Journal of Bionic Engineering, 17, 64–75.CrossRef Ma, Z., Xu, Y., Jiang, Y., Hu, X., & Zhang, D. (2020c). BTO/P(VDF-TrFE) nanofiber-based artificial lateral line sensor with drag enhancement structures. Journal of Bionic Engineering, 17, 64–75.CrossRef
Zurück zum Zitat Mcconney, M. E., Anderson, K. D., Brott, L. L., Naik, R. R., & Tsukruk, V. V. (2009a). Bioinspired material approaches to sensing. Advanced Functional Materials, 19, 2527–2544.CrossRef Mcconney, M. E., Anderson, K. D., Brott, L. L., Naik, R. R., & Tsukruk, V. V. (2009a). Bioinspired material approaches to sensing. Advanced Functional Materials, 19, 2527–2544.CrossRef
Zurück zum Zitat McConney, M. E., Schaber, C. F., Julian, M. D., Eberhardt, W. C., Humphrey, J. A. C., Barth, F. G., et al. (2009b). Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (cupiennius salei). Journal of the Royal Society Interface, 6, 681–694.CrossRef McConney, M. E., Schaber, C. F., Julian, M. D., Eberhardt, W. C., Humphrey, J. A. C., Barth, F. G., et al. (2009b). Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (cupiennius salei). Journal of the Royal Society Interface, 6, 681–694.CrossRef
Zurück zum Zitat Montgomery, J. C., Windsor, S., & Bassett, D. (2009). Behavior and physiology of mechanoreception: Separating signal and noise. Integrative Zoology, 4, 3–12.CrossRef Montgomery, J. C., Windsor, S., & Bassett, D. (2009). Behavior and physiology of mechanoreception: Separating signal and noise. Integrative Zoology, 4, 3–12.CrossRef
Zurück zum Zitat Paek, J., & Kim, J. (2014). Microsphere-assisted fabrication of high aspect-ratio elastomeric micropillars and waveguides. Nature Communications, 5, 3324.CrossRef Paek, J., & Kim, J. (2014). Microsphere-assisted fabrication of high aspect-ratio elastomeric micropillars and waveguides. Nature Communications, 5, 3324.CrossRef
Zurück zum Zitat Ranganathan, B. N., Penskiy, I., & Dean, W. (2015). Bio-inspired wind frame state sensing and estimation for MAV applications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2729–2735). Ranganathan, B. N., Penskiy, I., & Dean, W. (2015). Bio-inspired wind frame state sensing and estimation for MAV applications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2729–2735).
Zurück zum Zitat Schmitz, A., Bleckmann, H., & Mogdans, J. (2008). Organization of the superficial neuromast system in goldfish, Carassius auratus. Journal of Morphology, 269, 751–761.CrossRef Schmitz, A., Bleckmann, H., & Mogdans, J. (2008). Organization of the superficial neuromast system in goldfish, Carassius auratus. Journal of Morphology, 269, 751–761.CrossRef
Zurück zum Zitat Sengupta, D., Trap, D., & Kottapalli, A. G. P. (2020). Piezoresistive carbon nanofiber-based cilia-inspired flow sensor. Nanomaterials, 10, 211.CrossRef Sengupta, D., Trap, D., & Kottapalli, A. G. P. (2020). Piezoresistive carbon nanofiber-based cilia-inspired flow sensor. Nanomaterials, 10, 211.CrossRef
Zurück zum Zitat Shi, X., Cheng, C., et al. (2013). Artificial hair cell sensors using liquid metal alloy as piezoresistors. IEEE NEMS.CrossRef Shi, X., Cheng, C., et al. (2013). Artificial hair cell sensors using liquid metal alloy as piezoresistors. IEEE NEMS.CrossRef
Zurück zum Zitat Song, C., Aiyar, A. R., & Kim, S. H. (2011). Exploitation of aeroelastic effects for drift reduction in an all-polymer air flow sensor. Sensors and Actuators A: Physical, 165, 66–72.CrossRef Song, C., Aiyar, A. R., & Kim, S. H. (2011). Exploitation of aeroelastic effects for drift reduction in an all-polymer air flow sensor. Sensors and Actuators A: Physical, 165, 66–72.CrossRef
Zurück zum Zitat Sterbing-D’Angelo, S., Chadha, M., & Chen, C. (2011). Bat wing sensors support flight control. Proceedings of the National Academy of Sciences of the United States of America, 108, 11291–11296.CrossRef Sterbing-D’Angelo, S., Chadha, M., & Chen, C. (2011). Bat wing sensors support flight control. Proceedings of the National Academy of Sciences of the United States of America, 108, 11291–11296.CrossRef
Zurück zum Zitat Sterbing-D’Angelo, S., Liu, H., Yu, M., & Moss, C. F. (2016). Morphology and deflection properties of bat wing sensory hairs: Scanning electron microscopy, laser scanning vibrometry, and mechanics model. Bioinspiration & Biomimetics, 11, 056008.CrossRef Sterbing-D’Angelo, S., Liu, H., Yu, M., & Moss, C. F. (2016). Morphology and deflection properties of bat wing sensory hairs: Scanning electron microscopy, laser scanning vibrometry, and mechanics model. Bioinspiration & Biomimetics, 11, 056008.CrossRef
Zurück zum Zitat Tao, J., & Yu, X. (2012). Hair flow sensors: From bio-inspiration to bio-mimicking—A review. Smart Materials and Structures, 21, 113001.CrossRef Tao, J., & Yu, X. (2012). Hair flow sensors: From bio-inspiration to bio-mimicking—A review. Smart Materials and Structures, 21, 113001.CrossRef
Zurück zum Zitat Teyke, T. (1990). Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain, Behavior and Evolution, 35, 23–30.CrossRef Teyke, T. (1990). Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain, Behavior and Evolution, 35, 23–30.CrossRef
Zurück zum Zitat Yoshizawa, M., Goricki, S., Soares, D., & Jeffery, W. R. (2010). Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Current Biology, 20, 1631–1636.CrossRef Yoshizawa, M., Goricki, S., Soares, D., & Jeffery, W. R. (2010). Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Current Biology, 20, 1631–1636.CrossRef
Metadaten
Titel
Bio-Inspired Flexible Sensors for Flow Field Detection
verfasst von
Yonggang Jiang
Zhiqiang Ma
Dawei Shen
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-79749-2_9

Neuer Inhalt