Skip to main content

2018 | OriginalPaper | Buchkapitel

Bioactive Biomaterials: Potential for Application in Bone Regenerative Medicine

verfasst von : Jelena Najdanović, Jelena Rajković, Stevo Najman

Erschienen in: Biomaterials in Clinical Practice

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Critical-sized bone defects can be repaired by using bone tissue engineering (BTE) procedures which rely on the combined use of cells, scaffolds and biologically active molecules. Based on their bioreactivity, biomaterials can be bioinert or bioactive. Bioinert biomaterials cause fibrous capsule formation upon implantation which favors the appearance of micromovements in the implant-tissue interface so the prosthesis fails. Bioactive biomaterials elicit a specific biological response thus avoiding fibrous layer formation and are able to interact with the biological environment. Bioactive biomaterials can be natural (bovine bone mineral matrix, hyaluronic acid, collagen, gelatin, fibrin, agarose, alginate, chitosan, silk) or synthetic (ceramics, metals, polymers, hydrogels and composites). Ceramics (bioactive glasses, glass–ceramics, calcium phosphates ceramics and cements) are most frequently used among these biomaterials due to similarity with the bone mineral phase. Another advantage from the use of ceramics is the presence of biologically active hydroxycarbonate apatite layer formed on the surface of these biomaterials, which represents the bonding interface with the tissues. Bioactive biomaterials have wide application as medical devices and in drug delivery systems. Since cells cannot survive without an adequate blood supply, future directions in bioactive biomaterials applications lies in the construction of bioactive and biodegradable 3D scaffolds that have osteogenic and angiogenic features. A possible alternative to improve osteogenic and angiogenic potential of the applied biomaterials is to incorporate bioactive biomolecules (e.g. growth factors) into the scaffold. One of the future perspectives in this area is the construction of smart biomaterials that respond to their environment in predetermined way regarding the protein release, thus allowing release initiated by microenvironmental conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63(3):170–183CrossRef Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63(3):170–183CrossRef
Zurück zum Zitat Aksay IA, Weiner S (1998) Biomaterials-is this really a field of research? Curr Opin Solid State Mater Sci 3(3):219–220CrossRef Aksay IA, Weiner S (1998) Biomaterials-is this really a field of research? Curr Opin Solid State Mater Sci 3(3):219–220CrossRef
Zurück zum Zitat Allo BA, Costa DO, Dixon SJ et al (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3(2):432–463CrossRef Allo BA, Costa DO, Dixon SJ et al (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3(2):432–463CrossRef
Zurück zum Zitat Alsberg E, Anderson KW, Albeiruti A et al (2002) Engineering growing tissues. Proc Natl Acad Sci USA 99:12025–12030CrossRef Alsberg E, Anderson KW, Albeiruti A et al (2002) Engineering growing tissues. Proc Natl Acad Sci USA 99:12025–12030CrossRef
Zurück zum Zitat Anderson DG, Burdick JA, Langer R (2004) Materials science. Smart biomaterials. Science 305(5692):1923–1924CrossRef Anderson DG, Burdick JA, Langer R (2004) Materials science. Smart biomaterials. Science 305(5692):1923–1924CrossRef
Zurück zum Zitat Avnir D, Klein LC, Levy D et al (1997) Organo-silica Sol–gel materials. In: Apeloig Y, Rappoport Z (eds) The chemistry of organosilicon compounds—part 2. Wiley& Sons, Chichester Avnir D, Klein LC, Levy D et al (1997) Organo-silica Sol–gel materials. In: Apeloig Y, Rappoport Z (eds) The chemistry of organosilicon compounds—part 2. Wiley& Sons, Chichester
Zurück zum Zitat Awad HA, Wickham MQ, Leddy HA et al (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222CrossRef Awad HA, Wickham MQ, Leddy HA et al (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222CrossRef
Zurück zum Zitat Bala I, Hariharan S, Kumar MR (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21(5):387–422CrossRef Bala I, Hariharan S, Kumar MR (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21(5):387–422CrossRef
Zurück zum Zitat Bergman S, Litkowski L (1995) Bone in-fill of non-healing calvarial defects using particulate bioglass and autogenous bone. In: Wilson J, Hench LL, Greenspan D (eds) Bioceramics. Elsevier Science, Tarrytown, New York, pp 17–21 Bergman S, Litkowski L (1995) Bone in-fill of non-healing calvarial defects using particulate bioglass and autogenous bone. In: Wilson J, Hench LL, Greenspan D (eds) Bioceramics. Elsevier Science, Tarrytown, New York, pp 17–21
Zurück zum Zitat Biggs MJ, Richards RG, Gadegaard N et al (2007) The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med 18(2):399–404CrossRef Biggs MJ, Richards RG, Gadegaard N et al (2007) The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med 18(2):399–404CrossRef
Zurück zum Zitat Bishop AT, Pelzer M (2007) Vascularized bone allotransplantation: current state and implications for future reconstructive surgery. Orthop Clin North Am 38(1):109–122CrossRef Bishop AT, Pelzer M (2007) Vascularized bone allotransplantation: current state and implications for future reconstructive surgery. Orthop Clin North Am 38(1):109–122CrossRef
Zurück zum Zitat Blom EJ, Klein-Nulend J, Yin L et al (2001) Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin Oral Implants Res 12(6):609–616CrossRef Blom EJ, Klein-Nulend J, Yin L et al (2001) Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin Oral Implants Res 12(6):609–616CrossRef
Zurück zum Zitat Boanini E, Torricelli P, Gazzano M et al (2008) Alendronate–hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials 29(7):790–796CrossRef Boanini E, Torricelli P, Gazzano M et al (2008) Alendronate–hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials 29(7):790–796CrossRef
Zurück zum Zitat Bökel C, Brown NH (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3(3):311–321CrossRef Bökel C, Brown NH (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3(3):311–321CrossRef
Zurück zum Zitat Botchwey EA, Dupree MA, Pollack SR et al (2003) Tissue engineered bone: measurement of nutrient transport in threedimensional matrices. J Biomed Mater Res A 67(1):357–367CrossRef Botchwey EA, Dupree MA, Pollack SR et al (2003) Tissue engineered bone: measurement of nutrient transport in threedimensional matrices. J Biomed Mater Res A 67(1):357–367CrossRef
Zurück zum Zitat Brånemark R, Brånemark PI, Rydevik B et al (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181 Brånemark R, Brånemark PI, Rydevik B et al (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181
Zurück zum Zitat Brinker CJ, Raman NK, Logan MN et al (1995) Structure-property relationships in thin films and membranes. J Sol–Gel Sci Technol 4(2):117–135CrossRef Brinker CJ, Raman NK, Logan MN et al (1995) Structure-property relationships in thin films and membranes. J Sol–Gel Sci Technol 4(2):117–135CrossRef
Zurück zum Zitat Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359CrossRef Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359CrossRef
Zurück zum Zitat Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500(1):28–60CrossRef Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500(1):28–60CrossRef
Zurück zum Zitat Chau D, Agashi K, Shakesheff K (2008) Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Mater Sci Technol 24(9):1031–1044CrossRef Chau D, Agashi K, Shakesheff K (2008) Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Mater Sci Technol 24(9):1031–1044CrossRef
Zurück zum Zitat Cornejo A, Sahar DE, Stephenson SM et al (2012) Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A 18(15–16):1552–1561CrossRef Cornejo A, Sahar DE, Stephenson SM et al (2012) Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A 18(15–16):1552–1561CrossRef
Zurück zum Zitat Cvetković VJ, Najdanović JG, Vukelić-Nikolić MĐ et al (2015) Osteogenic potential of in vitro osteoinduced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in ectopic model. Int Orthop 39(11):2173–2180CrossRef Cvetković VJ, Najdanović JG, Vukelić-Nikolić MĐ et al (2015) Osteogenic potential of in vitro osteoinduced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in ectopic model. Int Orthop 39(11):2173–2180CrossRef
Zurück zum Zitat Čolić M, Džopalić T, Tomić S et al (2014) Immunomodulatory effects of carbon nanotubes functionalized with a toll-like receptor 7 agonist on human dendritic cells. Carbon 67:273–287CrossRef Čolić M, Džopalić T, Tomić S et al (2014) Immunomodulatory effects of carbon nanotubes functionalized with a toll-like receptor 7 agonist on human dendritic cells. Carbon 67:273–287CrossRef
Zurück zum Zitat Daculsi G, LeGeros RZ, Heughebaert M et al (1990) Formation of carbonateapatite crystals after implantation of calciumphosphate ceramics. Calcif Tissue Int 46(1):20–27CrossRef Daculsi G, LeGeros RZ, Heughebaert M et al (1990) Formation of carbonateapatite crystals after implantation of calciumphosphate ceramics. Calcif Tissue Int 46(1):20–27CrossRef
Zurück zum Zitat Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949 Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949
Zurück zum Zitat Davis ME, Hsieh PCH, Grodzinsky AJ et al (2005) Custom design of the cardiac microenvironment with biomaterials. Circ Res 97(1):8–15CrossRef Davis ME, Hsieh PCH, Grodzinsky AJ et al (2005) Custom design of the cardiac microenvironment with biomaterials. Circ Res 97(1):8–15CrossRef
Zurück zum Zitat De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149CrossRef De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149CrossRef
Zurück zum Zitat De Jonge LT, van den Beucken JJ, Leeuwenburgh SC et al (2009) In vitro responses to electrosprayed alkaline phosphatase/calcium phosphate composite coatings. Acta Biomater 5(7):2773–2782CrossRef De Jonge LT, van den Beucken JJ, Leeuwenburgh SC et al (2009) In vitro responses to electrosprayed alkaline phosphatase/calcium phosphate composite coatings. Acta Biomater 5(7):2773–2782CrossRef
Zurück zum Zitat Friedman CD, Costantino PD, Jones K et al (1991) Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 117(4):385–389CrossRef Friedman CD, Costantino PD, Jones K et al (1991) Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 117(4):385–389CrossRef
Zurück zum Zitat Fu Q, Rahaman MN, Bal BS et al (2010a) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 95(1):172–179CrossRef Fu Q, Rahaman MN, Bal BS et al (2010a) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 95(1):172–179CrossRef
Zurück zum Zitat Fu Q, Rahaman MN, Fu H et al (2010b) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 95(1):164–171CrossRef Fu Q, Rahaman MN, Fu H et al (2010b) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 95(1):164–171CrossRef
Zurück zum Zitat Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28(34):5068–5073CrossRef Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28(34):5068–5073CrossRef
Zurück zum Zitat Ge Z, Baguenard S, Lim LY et al (2004) Hydroxyapatitechitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049CrossRef Ge Z, Baguenard S, Lim LY et al (2004) Hydroxyapatitechitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049CrossRef
Zurück zum Zitat Gentile P, Chiono V, Tonda-Turo C et al (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6(10):1187–1197CrossRef Gentile P, Chiono V, Tonda-Turo C et al (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6(10):1187–1197CrossRef
Zurück zum Zitat Ginebra MP, Traykova T, Planell J (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Controlled Release 113(2):102–110CrossRef Ginebra MP, Traykova T, Planell J (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Controlled Release 113(2):102–110CrossRef
Zurück zum Zitat Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15(1):13–27CrossRef Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15(1):13–27CrossRef
Zurück zum Zitat Goldberg M, Lacerda-Pinheiro S, Jegat N et al (2006) The impact of bioactive molecules to stimulate tooth repair and regeneration as part of restorative dentistry. Dent Clin North Am 50(2):277–298CrossRef Goldberg M, Lacerda-Pinheiro S, Jegat N et al (2006) The impact of bioactive molecules to stimulate tooth repair and regeneration as part of restorative dentistry. Dent Clin North Am 50(2):277–298CrossRef
Zurück zum Zitat Goodman SB, Yao Z, Keeney M et al (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183CrossRef Goodman SB, Yao Z, Keeney M et al (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183CrossRef
Zurück zum Zitat Green DW, Ben-Nissan B, Yoon K-S et al (2016) Bioinspired materials for regenerative medicine: going beyond the human archetypes. J Mater Chem B 4(14):2396–2406CrossRef Green DW, Ben-Nissan B, Yoon K-S et al (2016) Bioinspired materials for regenerative medicine: going beyond the human archetypes. J Mater Chem B 4(14):2396–2406CrossRef
Zurück zum Zitat Griffith CK, Miller C, Sainson RC et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11(1–2):257–266CrossRef Griffith CK, Miller C, Sainson RC et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11(1–2):257–266CrossRef
Zurück zum Zitat Grotra D, Subbarao CV (2012) Bioactive materials used in endodontics. Rec Res Sci Tech 4(6):25–27 Grotra D, Subbarao CV (2012) Bioactive materials used in endodontics. Rec Res Sci Tech 4(6):25–27
Zurück zum Zitat Guo D, Xu K, Zhao X et al (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26(19):4073–4083CrossRef Guo D, Xu K, Zhao X et al (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26(19):4073–4083CrossRef
Zurück zum Zitat Han G, Ghosh P, Rotello VM (2007) Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 620:48–56CrossRef Han G, Ghosh P, Rotello VM (2007) Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 620:48–56CrossRef
Zurück zum Zitat Healy KE, Guldberg RE (2007) Bone tissue engineering. J Musculoskelet Neuronal Interact 7(4):328–330 Healy KE, Guldberg RE (2007) Bone tissue engineering. J Musculoskelet Neuronal Interact 7(4):328–330
Zurück zum Zitat Hege CS, Schiller SM (2015) New bioinspired materials for regenerative medicine. Curr Mol Bio Rep 1(2):77–86CrossRef Hege CS, Schiller SM (2015) New bioinspired materials for regenerative medicine. Curr Mol Bio Rep 1(2):77–86CrossRef
Zurück zum Zitat Hench LL (1998a) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41(4):511–518CrossRef Hench LL (1998a) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41(4):511–518CrossRef
Zurück zum Zitat Hench LL, Orefice R (1997) Sol–gel technology. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 22. Wiley, New York, p 497 Hench LL, Orefice R (1997) Sol–gel technology. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 22. Wiley, New York, p 497
Zurück zum Zitat Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1107CrossRef Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1107CrossRef
Zurück zum Zitat Hench LL, West JK (1996) Biological applications of bioactive glasses. Life Chem Rep 13:187–241 Hench LL, West JK (1996) Biological applications of bioactive glasses. Life Chem Rep 13:187–241
Zurück zum Zitat Hench LL, Splinter RJ, Allen WC et al (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141CrossRef Hench LL, Splinter RJ, Allen WC et al (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141CrossRef
Zurück zum Zitat Hench LL, Andersson OH, LaTorre GP (1991) The kinetics of bioactive ceramics part III: surface reactions for bioactive glasses compared with an inactive glass. Bioceramics 4:156–162 Hench LL, Andersson OH, LaTorre GP (1991) The kinetics of bioactive ceramics part III: surface reactions for bioactive glasses compared with an inactive glass. Bioceramics 4:156–162
Zurück zum Zitat Huang X, Bai S, Lu Q et al (2014) Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application. J Biomed Mater Res B Appl Biomater 103(7):1–13 Huang X, Bai S, Lu Q et al (2014) Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application. J Biomed Mater Res B Appl Biomater 103(7):1–13
Zurück zum Zitat Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693CrossRef Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693CrossRef
Zurück zum Zitat Ignjatović N, Uskoković V, Ajduković Z et al (2013) Multifunctional hydroxyapatite and poly (D, L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Mater Sci Eng C Mater Biol Appl 33(2):943–950CrossRef Ignjatović N, Uskoković V, Ajduković Z et al (2013) Multifunctional hydroxyapatite and poly (D, L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Mater Sci Eng C Mater Biol Appl 33(2):943–950CrossRef
Zurück zum Zitat Jarcho M, Kay JL, Gumaer RH et al (1977) Tissue, cellular and subcellular events at bone–ceramic hydroxyapatite interface. J Bioeng 1(2):79–92 Jarcho M, Kay JL, Gumaer RH et al (1977) Tissue, cellular and subcellular events at bone–ceramic hydroxyapatite interface. J Bioeng 1(2):79–92
Zurück zum Zitat Jazayeri HE, Tahriri M, Razavi M et al (2017) A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C Mater Biol Appl 70(Pt 1):913–929CrossRef Jazayeri HE, Tahriri M, Razavi M et al (2017) A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C Mater Biol Appl 70(Pt 1):913–929CrossRef
Zurück zum Zitat Jones JR (2009) New trends in bioactive scaffolds: the importance of nanostructure. J Eur Ceram Soc 29(7):1275–1281CrossRef Jones JR (2009) New trends in bioactive scaffolds: the importance of nanostructure. J Eur Ceram Soc 29(7):1275–1281CrossRef
Zurück zum Zitat Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32(12):1728–1743CrossRef Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32(12):1728–1743CrossRef
Zurück zum Zitat Karfeld-Sulzer LS, Weber FE (2012) Biomaterial development for oral and maxillofacial bone regeneration. J Korean Assoc Oral Maxillofac Surg 38(5):264–270CrossRef Karfeld-Sulzer LS, Weber FE (2012) Biomaterial development for oral and maxillofacial bone regeneration. J Korean Assoc Oral Maxillofac Surg 38(5):264–270CrossRef
Zurück zum Zitat Kato K, Eika Y, Ikada Y (1996) Deposition of hydroxiapatite thin layer onto a polymer surface carrying grafted phosphate polymer chains. J Biomed Mater Res 32(4):687–691CrossRef Kato K, Eika Y, Ikada Y (1996) Deposition of hydroxiapatite thin layer onto a polymer surface carrying grafted phosphate polymer chains. J Biomed Mater Res 32(4):687–691CrossRef
Zurück zum Zitat Keeting PE, Oursler MJ, Wiegand KE et al (1992) Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Mineral Res 7(11):1281–1289CrossRef Keeting PE, Oursler MJ, Wiegand KE et al (1992) Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Mineral Res 7(11):1281–1289CrossRef
Zurück zum Zitat Keshaw H, Forbes A, Day RM (2005) Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26(19):4171–4179CrossRef Keshaw H, Forbes A, Day RM (2005) Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26(19):4171–4179CrossRef
Zurück zum Zitat Kim IS, Park JW, Kwon IC et al (2002) Role of BMP, betaig-h3, and chitosan in early bony consolidation in distraction osteogenesis in a dog model. Plast Reconstr Surg 109:1966CrossRef Kim IS, Park JW, Kwon IC et al (2002) Role of BMP, betaig-h3, and chitosan in early bony consolidation in distraction osteogenesis in a dog model. Plast Reconstr Surg 109:1966CrossRef
Zurück zum Zitat Kim KK, Pack DW (2006) Microspheres for drug delivery. In: Ferrari M, Lee AP, Lee LJ (eds) BioMEMS and Biomed Nanotechnol. Springer, New York, pp 19–50CrossRef Kim KK, Pack DW (2006) Microspheres for drug delivery. In: Ferrari M, Lee AP, Lee LJ (eds) BioMEMS and Biomed Nanotechnol. Springer, New York, pp 19–50CrossRef
Zurück zum Zitat Kim S, Ku SH, Lim SY et al (2011) Graphene–biomineral hybridmaterials. Adv Mater 23(17):2009–2014CrossRef Kim S, Ku SH, Lim SY et al (2011) Graphene–biomineral hybridmaterials. Adv Mater 23(17):2009–2014CrossRef
Zurück zum Zitat Kirby GT, White LJ, Rahman CV et al (2011) PLGA-based microparticles for the sustained release of BMP-2. Polymers 3(1):571–586CrossRef Kirby GT, White LJ, Rahman CV et al (2011) PLGA-based microparticles for the sustained release of BMP-2. Polymers 3(1):571–586CrossRef
Zurück zum Zitat Kostic M, Krunic N, Nikolic L et al (2011) Influence of residual monomer reduction on acrylic denture base resins quality. Hemijska industrija 65(2):171–177CrossRef Kostic M, Krunic N, Nikolic L et al (2011) Influence of residual monomer reduction on acrylic denture base resins quality. Hemijska industrija 65(2):171–177CrossRef
Zurück zum Zitat Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 120(1–3):138–151CrossRef Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 120(1–3):138–151CrossRef
Zurück zum Zitat Kokubo T, Shigematsu M, Nagashima Y et al (1982) Apatite- and wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ 60(3–4):260–268 Kokubo T, Shigematsu M, Nagashima Y et al (1982) Apatite- and wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ 60(3–4):260–268
Zurück zum Zitat Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24(13):2161–2175CrossRef Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24(13):2161–2175CrossRef
Zurück zum Zitat Krunić N, Lj Nikolić, Kostić M et al (2011) In vitro examination of oral tissue conditioners potential toxicity. Chem Ind 65(6):697–706CrossRef Krunić N, Lj Nikolić, Kostić M et al (2011) In vitro examination of oral tissue conditioners potential toxicity. Chem Ind 65(6):697–706CrossRef
Zurück zum Zitat Kyllönen L, D’Este M, Alini M et al (2015) Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 11:412–434CrossRef Kyllönen L, D’Este M, Alini M et al (2015) Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 11:412–434CrossRef
Zurück zum Zitat Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492 Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef
Zurück zum Zitat Lee JH, Ko IH, Jeon SH et al (2011) Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy. In: Proceedings of SPIE, biosens nanomed IV: 8099 of 80990K, San Diego, Calif, USA Lee JH, Ko IH, Jeon SH et al (2011) Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy. In: Proceedings of SPIE, biosens nanomed IV: 8099 of 80990K, San Diego, Calif, USA
Zurück zum Zitat LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthopaed Related Res 395:81–98CrossRef LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthopaed Related Res 395:81–98CrossRef
Zurück zum Zitat Levingstone TJ, Matsiko A, Dickson GR et al (2014) biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004CrossRef Levingstone TJ, Matsiko A, Dickson GR et al (2014) biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004CrossRef
Zurück zum Zitat Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24(5):414–422CrossRef Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24(5):414–422CrossRef
Zurück zum Zitat Li J, Hsu Y, Luo E et al (2011) Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthet Plast Surg 35(4):636–640CrossRef Li J, Hsu Y, Luo E et al (2011) Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthet Plast Surg 35(4):636–640CrossRef
Zurück zum Zitat Li M, Liu X, Ge B (2010) Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin Orthop Relat Res 468(7):1978–1985CrossRef Li M, Liu X, Ge B (2010) Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin Orthop Relat Res 468(7):1978–1985CrossRef
Zurück zum Zitat Liu Y, Enggist L, Kuffer AF et al (2007) The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials 28(16):2677–2686CrossRef Liu Y, Enggist L, Kuffer AF et al (2007) The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials 28(16):2677–2686CrossRef
Zurück zum Zitat Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660CrossRef Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660CrossRef
Zurück zum Zitat Liu Z, Robinson JT, Tabakman SM et al (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14(7–8):316–323CrossRef Liu Z, Robinson JT, Tabakman SM et al (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14(7–8):316–323CrossRef
Zurück zum Zitat Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38CrossRef Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38CrossRef
Zurück zum Zitat Loty C, Sautier JM, Boulekbache H et al (2000) In vitro bone formation on a bonelike apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. J Biomed Mater Res 49(4):423–434CrossRef Loty C, Sautier JM, Boulekbache H et al (2000) In vitro bone formation on a bonelike apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. J Biomed Mater Res 49(4):423–434CrossRef
Zurück zum Zitat Lu HH, Tang A, Oh SC et al (2005) Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials 26(32):6323–6334CrossRef Lu HH, Tang A, Oh SC et al (2005) Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials 26(32):6323–6334CrossRef
Zurück zum Zitat Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518CrossRef Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518CrossRef
Zurück zum Zitat Ma Z, Gao C, Gong Y et al (2002) Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility. J Biomed Mater Res 63(6):838–847CrossRef Ma Z, Gao C, Gong Y et al (2002) Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility. J Biomed Mater Res 63(6):838–847CrossRef
Zurück zum Zitat Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397CrossRef Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397CrossRef
Zurück zum Zitat Marchesan S, Prato M (2013) Nanomaterials for (Nano)medicine. ACS Med Chem Lett 4(2):147–149CrossRef Marchesan S, Prato M (2013) Nanomaterials for (Nano)medicine. ACS Med Chem Lett 4(2):147–149CrossRef
Zurück zum Zitat Marion NW, Liang W, Reilly GC et al (2005) Borate glass supports the in vitro osteogenic differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 12(3):239–246CrossRef Marion NW, Liang W, Reilly GC et al (2005) Borate glass supports the in vitro osteogenic differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 12(3):239–246CrossRef
Zurück zum Zitat Mauth C, Huwig A, Graf-Hausner U et al (2007) Restorative applications for dental pulp therapy. In: Ashammakhi N, Reis RL, Chiellini (eds) Topics in tissue engineering, vol 3, pp 1–30 Mauth C, Huwig A, Graf-Hausner U et al (2007) Restorative applications for dental pulp therapy. In: Ashammakhi N, Reis RL, Chiellini (eds) Topics in tissue engineering, vol 3, pp 1–30
Zurück zum Zitat Minelli EB, Benini A (2007) PMMA as drug delivery system and in vivo release from spacers. In: Romano C, Crosby L, Hofmann G, Meani E (eds) Infection and local treatment in orthopedic surgery. Springer, New York, pp 79–91CrossRef Minelli EB, Benini A (2007) PMMA as drug delivery system and in vivo release from spacers. In: Romano C, Crosby L, Hofmann G, Meani E (eds) Infection and local treatment in orthopedic surgery. Springer, New York, pp 79–91CrossRef
Zurück zum Zitat Najdanović JG, Cvetković VJ, Stojanović S et al (2015) The influence of adipose-derived stem cells induced into endothelial cells on ectopic vasculogenesis and osteogenesis. Cell Mol Bioeng 8(4):577–590CrossRef Najdanović JG, Cvetković VJ, Stojanović S et al (2015) The influence of adipose-derived stem cells induced into endothelial cells on ectopic vasculogenesis and osteogenesis. Cell Mol Bioeng 8(4):577–590CrossRef
Zurück zum Zitat Najdanović JG, Cvetković VJ, Stojanović S et al (2016) Effects of bone tissue engineering triad components on vascularization process: comparative gene expression and histological evaluation in an ectopic bone-forming model. Biotechnol Biotechnol Equip 30(6):1122–1131 Najdanović JG, Cvetković VJ, Stojanović S et al (2016) Effects of bone tissue engineering triad components on vascularization process: comparative gene expression and histological evaluation in an ectopic bone-forming model. Biotechnol Biotechnol Equip 30(6):1122–1131
Zurück zum Zitat Najman SJ, Cvetković VJ, Najdanović JG et al (2016) Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: a simulation of intraoperative procedure. J Craniomaxillofac Surg 44(10):1750–1760CrossRef Najman SJ, Cvetković VJ, Najdanović JG et al (2016) Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: a simulation of intraoperative procedure. J Craniomaxillofac Surg 44(10):1750–1760CrossRef
Zurück zum Zitat Narmoneva DA, Oni O, Sieminski AL et al (2005) Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23):4837–4846CrossRef Narmoneva DA, Oni O, Sieminski AL et al (2005) Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23):4837–4846CrossRef
Zurück zum Zitat Navarro M, Michiardi A, Castaño O et al (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158CrossRef Navarro M, Michiardi A, Castaño O et al (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158CrossRef
Zurück zum Zitat Nayak TR, Andersen H, Makam VS et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678CrossRef Nayak TR, Andersen H, Makam VS et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678CrossRef
Zurück zum Zitat Neut D, Hendriks JG, van Horn JR et al (2005) Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop 76(1):109–114CrossRef Neut D, Hendriks JG, van Horn JR et al (2005) Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop 76(1):109–114CrossRef
Zurück zum Zitat Odabasoglu F, Yildirim OS, Aygun H et al (2012) Diffractaic acid, a novel proapoptotic agent, induces with olive oil both apoptosis and antioxidative systems in Ti-implanted rabbits. Eur J Pharmacol 674(2–3):171–178CrossRef Odabasoglu F, Yildirim OS, Aygun H et al (2012) Diffractaic acid, a novel proapoptotic agent, induces with olive oil both apoptosis and antioxidative systems in Ti-implanted rabbits. Eur J Pharmacol 674(2–3):171–178CrossRef
Zurück zum Zitat Oguntebi B, Clark A, Wilson J (1993) Pulp capping with bioglass and autologous demineralized dentin in miniature swine. J Dent Res 72(2):484–489CrossRef Oguntebi B, Clark A, Wilson J (1993) Pulp capping with bioglass and autologous demineralized dentin in miniature swine. J Dent Res 72(2):484–489CrossRef
Zurück zum Zitat Ohtsuki C, Kamitakahara M, Miyazaki T (2009) Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface 6(Suppl 3):S349–S360CrossRef Ohtsuki C, Kamitakahara M, Miyazaki T (2009) Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface 6(Suppl 3):S349–S360CrossRef
Zurück zum Zitat O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinicean overview. Tissue Eng Part B Rev 17(6):389–392CrossRef O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinicean overview. Tissue Eng Part B Rev 17(6):389–392CrossRef
Zurück zum Zitat Oonishi H, Kushitani S, Iwaki H (1995) Comparative bone formation in several kinds of bioceramic granules. In: Wilson J, Hench LL, Greenspan D (eds) Eighth international symposium on ceramics in medicine. Elsevier Science Ltd, Tokyo, pp 137–144 Oonishi H, Kushitani S, Iwaki H (1995) Comparative bone formation in several kinds of bioceramic granules. In: Wilson J, Hench LL, Greenspan D (eds) Eighth international symposium on ceramics in medicine. Elsevier Science Ltd, Tokyo, pp 137–144
Zurück zum Zitat Oonishi H, Kushitani S, Yasukawa E et al (1997) Particulate bioglass compared with hydroxyapatite as a bone g raft substitute. J Clin Orthop Rel Res 334:316–325 Oonishi H, Kushitani S, Yasukawa E et al (1997) Particulate bioglass compared with hydroxyapatite as a bone g raft substitute. J Clin Orthop Rel Res 334:316–325
Zurück zum Zitat Pereira MM, Hench LL (1996) Mechanisms of hydroxyapatite formation on porous gel-silica matrices. J Sol–Gel Sci Technol 7(1):59–64CrossRef Pereira MM, Hench LL (1996) Mechanisms of hydroxyapatite formation on porous gel-silica matrices. J Sol–Gel Sci Technol 7(1):59–64CrossRef
Zurück zum Zitat Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol–gel derived bioactive glasses in vitro. J Biomed Mater Res 28(6):693–698CrossRef Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol–gel derived bioactive glasses in vitro. J Biomed Mater Res 28(6):693–698CrossRef
Zurück zum Zitat Piotrowski G, Hench LL, Allen WC et al (1975) Mechanical studies of the bone bioglass interfacial bond. J Biomed Mater Res 9(4):47–61CrossRef Piotrowski G, Hench LL, Allen WC et al (1975) Mechanical studies of the bone bioglass interfacial bond. J Biomed Mater Res 9(4):47–61CrossRef
Zurück zum Zitat Puleo DA, Nanci A (1999) Understanding and controlling the bone–implant interface. Biomaterials 20(23–24):2311–2321CrossRef Puleo DA, Nanci A (1999) Understanding and controlling the bone–implant interface. Biomaterials 20(23–24):2311–2321CrossRef
Zurück zum Zitat Pyo SW, Kim YM, Kim CS et al (2014) Bone formation on biomimetic calcium phosphate-coated and zoledronate-immobilized titanium implants in osteoporotic rat tibiae. Int J Oral Maxillofac Implants 29(2):478–484CrossRef Pyo SW, Kim YM, Kim CS et al (2014) Bone formation on biomimetic calcium phosphate-coated and zoledronate-immobilized titanium implants in osteoporotic rat tibiae. Int J Oral Maxillofac Implants 29(2):478–484CrossRef
Zurück zum Zitat Rajković J, Stojanović S, Đorđević L et al (2015) Locally applied cholecalciferol and alfacalcidol act differently on healing of femur defects filled with bone mineral matrix and platelet-rich plasma in ovariectomized rats. Biotechnol Biotechnol Equip 29(5):963–969CrossRef Rajković J, Stojanović S, Đorđević L et al (2015) Locally applied cholecalciferol and alfacalcidol act differently on healing of femur defects filled with bone mineral matrix and platelet-rich plasma in ovariectomized rats. Biotechnol Biotechnol Equip 29(5):963–969CrossRef
Zurück zum Zitat Ratner BD, Hoffman AS, Schoen FJ et al (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic Press, New York Ratner BD, Hoffman AS, Schoen FJ et al (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic Press, New York
Zurück zum Zitat Rejda BV, Peelen JGJ, de Groot K (1977) Tricalcium phosphate as a bone substitute. J Bioeng 1(2):93–97 Rejda BV, Peelen JGJ, de Groot K (1977) Tricalcium phosphate as a bone substitute. J Bioeng 1(2):93–97
Zurück zum Zitat Roberts HW, Toth JM, Berzins DW et al (2008) Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 24(2):149–164CrossRef Roberts HW, Toth JM, Berzins DW et al (2008) Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 24(2):149–164CrossRef
Zurück zum Zitat Sachse A, Wagner A, Keller M et al (2005) Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2(BMP-2) in aged sheep. Bone 37(5):699–710CrossRef Sachse A, Wagner A, Keller M et al (2005) Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2(BMP-2) in aged sheep. Bone 37(5):699–710CrossRef
Zurück zum Zitat Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A et al (2014) PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 15(2):517–535CrossRef Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A et al (2014) PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 15(2):517–535CrossRef
Zurück zum Zitat Salem AK, Stevens R, Pearson RG et al (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61(2):212–217CrossRef Salem AK, Stevens R, Pearson RG et al (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61(2):212–217CrossRef
Zurück zum Zitat Salinas AJ, Vallet-Regı M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Advances 3(28):1116–1131CrossRef Salinas AJ, Vallet-Regı M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Advances 3(28):1116–1131CrossRef
Zurück zum Zitat Salinas AJ, Esbrit P, Vallet-Regí M (2013) A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci 1(1):40–51CrossRef Salinas AJ, Esbrit P, Vallet-Regí M (2013) A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci 1(1):40–51CrossRef
Zurück zum Zitat Schek RM, Taboas JM, Hollister SJ et al (2005) Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod Craniofacial Res 8(4):313–319CrossRef Schek RM, Taboas JM, Hollister SJ et al (2005) Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod Craniofacial Res 8(4):313–319CrossRef
Zurück zum Zitat Schepers E, de Clercq M, Ducheyne P et al (1991) Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 18(5):439–452CrossRef Schepers E, de Clercq M, Ducheyne P et al (1991) Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 18(5):439–452CrossRef
Zurück zum Zitat Schouten C, van den Beucken JJ, Meijer GJ et al (2010) In vivo bioactivity of DNA-based coatings: an experimental study in rats. J Biomed Mater Res A 92(3):931–941 Schouten C, van den Beucken JJ, Meijer GJ et al (2010) In vivo bioactivity of DNA-based coatings: an experimental study in rats. J Biomed Mater Res A 92(3):931–941
Zurück zum Zitat Schroeder JE, Mosheiff R (2011) Tissue engineering approaches for bone repair: concepts and evidence. Injury 42(5):609–613CrossRef Schroeder JE, Mosheiff R (2011) Tissue engineering approaches for bone repair: concepts and evidence. Injury 42(5):609–613CrossRef
Zurück zum Zitat Seitz TL, Noonan KD, Hench LL et al (1982) Effect of fibronectin on the adhesion of an established cell line to a surface reactive biomaterial. J Biomed Mater Res 16(3):195–207CrossRef Seitz TL, Noonan KD, Hench LL et al (1982) Effect of fibronectin on the adhesion of an established cell line to a surface reactive biomaterial. J Biomed Mater Res 16(3):195–207CrossRef
Zurück zum Zitat Seshima H, Yoshinari M, Takemoto S et al (2006) Control of bisphosphonate release using hydroxyapatite granules. J Biomed Mater Res B Appl Biomater 78(2):215–221CrossRef Seshima H, Yoshinari M, Takemoto S et al (2006) Control of bisphosphonate release using hydroxyapatite granules. J Biomed Mater Res B Appl Biomater 78(2):215–221CrossRef
Zurück zum Zitat Sharma M, Murray PE, Sharma D (2013) Modern approaches to use bioactive materials and molecules in medical and dental treatments. Int J Curr Microbiol App Sci 2(11):429–439 Sharma M, Murray PE, Sharma D (2013) Modern approaches to use bioactive materials and molecules in medical and dental treatments. Int J Curr Microbiol App Sci 2(11):429–439
Zurück zum Zitat Shi C, Zhu Y, Ran X et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192CrossRef Shi C, Zhu Y, Ran X et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192CrossRef
Zurück zum Zitat Shi X, Chang H, Chen S et al (2012) Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv Funct Mater 22(4):751–759CrossRef Shi X, Chang H, Chen S et al (2012) Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv Funct Mater 22(4):751–759CrossRef
Zurück zum Zitat Shin SR, Li YC, Jang HL et al (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105(Pt B):255–274 Shin SR, Li YC, Jang HL et al (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105(Pt B):255–274
Zurück zum Zitat Shores EC, Holmes RE (1993) Porous hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 181–198CrossRef Shores EC, Holmes RE (1993) Porous hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 181–198CrossRef
Zurück zum Zitat Siebers M, Ter Brugge P, Walboomers X et al (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2):137–146CrossRef Siebers M, Ter Brugge P, Walboomers X et al (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2):137–146CrossRef
Zurück zum Zitat Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48(3):416–427CrossRef Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48(3):416–427CrossRef
Zurück zum Zitat Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25CrossRef Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25CrossRef
Zurück zum Zitat Stevens MM, Qanadilo HF, Langer R et al (2004) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25(5):887–894CrossRef Stevens MM, Qanadilo HF, Langer R et al (2004) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25(5):887–894CrossRef
Zurück zum Zitat Stojanović IŽ, Najman S, Jovanović O et al (2014) Effects of depsidones from Hypogymnia physodes on HeLa cells viability and growth. Folia Biol (Praha) 60(2):89–94 Stojanović IŽ, Najman S, Jovanović O et al (2014) Effects of depsidones from Hypogymnia physodes on HeLa cells viability and growth. Folia Biol (Praha) 60(2):89–94
Zurück zum Zitat Stojanović-Radić Z, Čomić L, Radulović N et al (2012a) Antistaphylococcal activity of Inula helenium L. root essential oil: eudesmane sesquiterpene lactones induce cell membrane damage. Eur J Clin Microbiol Infect Dis 31(6):1015–1025CrossRef Stojanović-Radić Z, Čomić L, Radulović N et al (2012a) Antistaphylococcal activity of Inula helenium L. root essential oil: eudesmane sesquiterpene lactones induce cell membrane damage. Eur J Clin Microbiol Infect Dis 31(6):1015–1025CrossRef
Zurück zum Zitat Stojanović-Radić Z, Čomić L, Radulović N et al (2012b) Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharmaceutical biology 50(8):933–940CrossRef Stojanović-Radić Z, Čomić L, Radulović N et al (2012b) Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharmaceutical biology 50(8):933–940CrossRef
Zurück zum Zitat Takić-Miladinov D, Tomić S, Stojanović S et al (2016) Synthesis, swelling properties and evaluation of genotoxicity of hydrogels based on (Meth)acrylates and Itaconic Acid. Mat Res 19(5):1070–1079CrossRef Takić-Miladinov D, Tomić S, Stojanović S et al (2016) Synthesis, swelling properties and evaluation of genotoxicity of hydrogels based on (Meth)acrylates and Itaconic Acid. Mat Res 19(5):1070–1079CrossRef
Zurück zum Zitat Thein-Han W, Liu J, Xu HH (2012) Calciumphosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent Mater 28(10):1059–1070CrossRef Thein-Han W, Liu J, Xu HH (2012) Calciumphosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent Mater 28(10):1059–1070CrossRef
Zurück zum Zitat Tirapelli C, Panzeri H, Soares RG et al (2010) A novel bioactive glass-ceramic for treating dentin hypersensitivity. Braz Oral Res 24(4):381–387CrossRef Tirapelli C, Panzeri H, Soares RG et al (2010) A novel bioactive glass-ceramic for treating dentin hypersensitivity. Braz Oral Res 24(4):381–387CrossRef
Zurück zum Zitat Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630CrossRef Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630CrossRef
Zurück zum Zitat Trojani C, Boukhechba F, Scimeca JC et al (2006) Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 27(17):3256–3264CrossRef Trojani C, Boukhechba F, Scimeca JC et al (2006) Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 27(17):3256–3264CrossRef
Zurück zum Zitat Tsigkou O, Hench LL, Boccaccini AR et al (2007) Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass® composite films in the absence of osteogenic supplements. J Biomed Mater Res A 80(4):837–852CrossRef Tsigkou O, Hench LL, Boccaccini AR et al (2007) Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass® composite films in the absence of osteogenic supplements. J Biomed Mater Res A 80(4):837–852CrossRef
Zurück zum Zitat Vallet-Regi M, Ruiz-Hernandez E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23(44):5177–5218CrossRef Vallet-Regi M, Ruiz-Hernandez E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23(44):5177–5218CrossRef
Zurück zum Zitat van de Watering FC, Molkenboer-Kuenen JD, Boerman OC et al (2012) Differential loading methods for BMP-2 within injectable calcium phosphate cement. J Control Release 164(3):283–290CrossRef van de Watering FC, Molkenboer-Kuenen JD, Boerman OC et al (2012) Differential loading methods for BMP-2 within injectable calcium phosphate cement. J Control Release 164(3):283–290CrossRef
Zurück zum Zitat Venkatesan J, Pallela R, Kim S-K (2014) Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol 10(10):3105–3123CrossRef Venkatesan J, Pallela R, Kim S-K (2014) Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol 10(10):3105–3123CrossRef
Zurück zum Zitat Verron E, Khairoun I, Guicheux J et al (2010) Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 15(13–14):547–552CrossRef Verron E, Khairoun I, Guicheux J et al (2010) Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 15(13–14):547–552CrossRef
Zurück zum Zitat Vogel M, Voigt C, Gross U et al (2001) In vivo comparison of bioactive glass particles in rabbits. Biomaterials 22(4):357–362CrossRef Vogel M, Voigt C, Gross U et al (2001) In vivo comparison of bioactive glass particles in rabbits. Biomaterials 22(4):357–362CrossRef
Zurück zum Zitat Vrouwenvelder CA, Groot CG, de Groot KJ (1993) Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. J Biomed Mater Res 27(4):465–475CrossRef Vrouwenvelder CA, Groot CG, de Groot KJ (1993) Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. J Biomed Mater Res 27(4):465–475CrossRef
Zurück zum Zitat Wang H-L, Carroll WJ (2001) Guided bone regeneration using bone grafts and collagen membranes. Quintessence Int 32(7):504–515 Wang H-L, Carroll WJ (2001) Guided bone regeneration using bone grafts and collagen membranes. Quintessence Int 32(7):504–515
Zurück zum Zitat Wang XP, Li X, Ito A et al (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO(2)–P(2)O(5) (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 7(10):3638–3644CrossRef Wang XP, Li X, Ito A et al (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO(2)–P(2)O(5) (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 7(10):3638–3644CrossRef
Zurück zum Zitat Wei G, Jin Q, Giannobile WV et al (2007) The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28(12):2087–2096CrossRef Wei G, Jin Q, Giannobile WV et al (2007) The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28(12):2087–2096CrossRef
Zurück zum Zitat Wheeler DL, Stokes KE (1997) In vivo evaluation of sol–gel bioglasst: part I: histological findings. In: Transactions of the 23rd annual meeting of the society for biomaterials, New Orleans, LA Wheeler DL, Stokes KE (1997) In vivo evaluation of sol–gel bioglasst: part I: histological findings. In: Transactions of the 23rd annual meeting of the society for biomaterials, New Orleans, LA
Zurück zum Zitat Wheeler DL, Stokes KE, Hoellrich RG et al (1998) Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 41(4):527–533CrossRef Wheeler DL, Stokes KE, Hoellrich RG et al (1998) Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 41(4):527–533CrossRef
Zurück zum Zitat Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037CrossRef Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037CrossRef
Zurück zum Zitat Wilson J, Yli-Urpo A, Risto-Pekka H (1993) Bioactive glasses: clinical applications. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 63–74CrossRef Wilson J, Yli-Urpo A, Risto-Pekka H (1993) Bioactive glasses: clinical applications. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 63–74CrossRef
Zurück zum Zitat Winslow BD, Shao H, Stewart RJ et al (2010) Biocompatibility of adhesive complex coacervates modeled after the Sandcastle glue of P. californica for craniofacial reconstruction. Biomaterials 31(36):9373–9381CrossRef Winslow BD, Shao H, Stewart RJ et al (2010) Biocompatibility of adhesive complex coacervates modeled after the Sandcastle glue of P. californica for craniofacial reconstruction. Biomaterials 31(36):9373–9381CrossRef
Zurück zum Zitat Wu CC, Wang CC, Lu DH et al (2012) Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats. Biomed Mater 7(3):035009CrossRef Wu CC, Wang CC, Lu DH et al (2012) Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats. Biomed Mater 7(3):035009CrossRef
Zurück zum Zitat Xu HH, Takagi S, Quinn JB et al (2004) Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A 68(4):725–734CrossRef Xu HH, Takagi S, Quinn JB et al (2004) Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A 68(4):725–734CrossRef
Zurück zum Zitat Xynos ID, Edgar AJ, Buttery LDK et al (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of BioglassW 45S5 dissolution. J Biomed Mater Res 55(2):151–157CrossRef Xynos ID, Edgar AJ, Buttery LDK et al (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of BioglassW 45S5 dissolution. J Biomed Mater Res 55(2):151–157CrossRef
Zurück zum Zitat Yamamuro T (1993) A/W glass-ceramic: clinical applications. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 89–104CrossRef Yamamuro T (1993) A/W glass-ceramic: clinical applications. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 89–104CrossRef
Zurück zum Zitat Yu X, Wang L, Jiang X et al (2012) Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant. J Mater Sci Mater Med 23(9):2177–2186CrossRef Yu X, Wang L, Jiang X et al (2012) Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant. J Mater Sci Mater Med 23(9):2177–2186CrossRef
Zurück zum Zitat Yuan H, Fernandes H, Habibovic P et al (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA 107(31):13614–13619CrossRef Yuan H, Fernandes H, Habibovic P et al (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA 107(31):13614–13619CrossRef
Zurück zum Zitat Zheng K, Yang SB, Wang JJ et al (2012) Characteristics and biocompatibility of Na(2)O–K(2)O–CaO–MgO–SrO–B(2)O(3)–P(2)O(5) borophosphate glass fibers. J Non-Cryst Solids 358(2):387–391CrossRef Zheng K, Yang SB, Wang JJ et al (2012) Characteristics and biocompatibility of Na(2)O–K(2)O–CaO–MgO–SrO–B(2)O(3)–P(2)O(5) borophosphate glass fibers. J Non-Cryst Solids 358(2):387–391CrossRef
Zurück zum Zitat Zimmermann WH, Melnychenko I, Eschenhagen T (2004) Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9):1639–1647CrossRef Zimmermann WH, Melnychenko I, Eschenhagen T (2004) Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9):1639–1647CrossRef
Zurück zum Zitat Živković J, Najman S, Vukelić M et al (2015) Osteogenic effect of inflammatory macrophages loaded onto mineral bone substitute in subcutaneous implants. Arch Biol Sci 67(1):173–186CrossRef Živković J, Najman S, Vukelić M et al (2015) Osteogenic effect of inflammatory macrophages loaded onto mineral bone substitute in subcutaneous implants. Arch Biol Sci 67(1):173–186CrossRef
Metadaten
Titel
Bioactive Biomaterials: Potential for Application in Bone Regenerative Medicine
verfasst von
Jelena Najdanović
Jelena Rajković
Stevo Najman
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68025-5_12

Neuer Inhalt