Skip to main content

2021 | OriginalPaper | Buchkapitel

Biochar as a Catalytic Material

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biochar has recently emerged as a class of biomass-derived functional materials with the potential applications in environmental sustainability. The high activity, porosity, flexibility and cost-effectiveness of biochar, makes it a promising alternative to other conventional catalysts. In this chapter, we present a comprehensive review of the catalytic properties and catalytic applications of the biochar. We begin by discussing the biomass conversion and the generation of the biochar catalyst. We then examine the properties, functionalities and discuss the underlying mechanisms of the biochar as a catalyst. This is followed by the discussion of possible applications in biomass hydrolysis, isomerization and dehydration, for energy production, i.e., biofuel production, syngas production and tar decomposition. Further, we discuss its role as an environmental catalyst in the abatement of the contaminants. At the end, we compare the biochar catalysis with the conventional heterogeneous catalysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J et al (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515CrossRef Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J et al (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515CrossRef
3.
Zurück zum Zitat Graber E, Elad Y (2013) Biochar impact on plant resistance to disease. In: Rineau F, Ladygina N (eds) Biochar and soil biodata. Taylor & Francis, London, pp 41–68 Graber E, Elad Y (2013) Biochar impact on plant resistance to disease. In: Rineau F, Ladygina N (eds) Biochar and soil biodata. Taylor & Francis, London, pp 41–68
4.
6.
Zurück zum Zitat Lee J, Sarmah AK, Kwon EE (2019) Production and formation of biochar. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 3–18CrossRef Lee J, Sarmah AK, Kwon EE (2019) Production and formation of biochar. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 3–18CrossRef
12.
Zurück zum Zitat Zimmerman A, Gao B (2013) The stability of biochar in the environment. In: Rineau F, Ladygina N (eds) Biochar and soil biodata. Taylor & Francis, London, pp 1–40 Zimmerman A, Gao B (2013) The stability of biochar in the environment. In: Rineau F, Ladygina N (eds) Biochar and soil biodata. Taylor & Francis, London, pp 1–40
15.
Zurück zum Zitat Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. Biochar for environmental management. Science and technology. Earthscan Publishers Ltd, London Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. Biochar for environmental management. Science and technology. Earthscan Publishers Ltd, London
24.
Zurück zum Zitat Cheng F, Li X (2018) Preparation and application of biochar-based catalysts for biofuel production. Catalysts 8(9):346CrossRef Cheng F, Li X (2018) Preparation and application of biochar-based catalysts for biofuel production. Catalysts 8(9):346CrossRef
31.
Zurück zum Zitat Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B (2016) Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environ Sci Technol 50(2):694–700CrossRef Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B (2016) Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environ Sci Technol 50(2):694–700CrossRef
32.
Zurück zum Zitat Huang Z, Wang T, Shen M, Huang Z, Chong Y, Cui L (2019) Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst. Chem Eng J 369:784–792CrossRef Huang Z, Wang T, Shen M, Huang Z, Chong Y, Cui L (2019) Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst. Chem Eng J 369:784–792CrossRef
35.
Zurück zum Zitat Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 214:836–851CrossRef Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 214:836–851CrossRef
36.
Zurück zum Zitat Trakal L, Vítková M, Hudcová B, Beesley L, Komárek M (2019) Biochar and its composites for metal(loid) removal from aqueous solutions. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 113–141CrossRef Trakal L, Vítková M, Hudcová B, Beesley L, Komárek M (2019) Biochar and its composites for metal(loid) removal from aqueous solutions. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 113–141CrossRef
41.
46.
Zurück zum Zitat Han X, Chu L, Liu S, Chen T, Ding C, Yan J et al (2015) Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar. Bioresources 10(2):2836–2849CrossRef Han X, Chu L, Liu S, Chen T, Ding C, Yan J et al (2015) Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar. Bioresources 10(2):2836–2849CrossRef
47.
Zurück zum Zitat Jagtoyen M, Derbyshire F (1998) Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36(7–8):1085–1097CrossRef Jagtoyen M, Derbyshire F (1998) Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36(7–8):1085–1097CrossRef
48.
Zurück zum Zitat Aasberg-Petersen K, Christensen TS, Dybkjaer I, Sehested J, Østberg M, Coertzen RM et al (2004) Synthesis gas production for FT synthesis. In: Steynberg A, Dry M (eds) Studies in surface science and catalysis, vol 152. Elsevier, Amsterdam, pp 258–405 Aasberg-Petersen K, Christensen TS, Dybkjaer I, Sehested J, Østberg M, Coertzen RM et al (2004) Synthesis gas production for FT synthesis. In: Steynberg A, Dry M (eds) Studies in surface science and catalysis, vol 152. Elsevier, Amsterdam, pp 258–405
50.
Zurück zum Zitat Tsang DCW, Yu IKM, Xiong X (2019) Novel application of biochar in stormwater harvesting. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 319–347CrossRef Tsang DCW, Yu IKM, Xiong X (2019) Novel application of biochar in stormwater harvesting. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 319–347CrossRef
51.
Zurück zum Zitat Bartholomew CH, Farrauto RJ (2011) Fundamentals of industrial catalytic processes. John Wiley & Sons, Hoboken, NJ Bartholomew CH, Farrauto RJ (2011) Fundamentals of industrial catalytic processes. John Wiley & Sons, Hoboken, NJ
55.
Zurück zum Zitat Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T, Antal MJ (2007) Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind Eng Chem Res 46(18):5954–5967. https://doi.org/10.1021/ie070415uCrossRef Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T, Antal MJ (2007) Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind Eng Chem Res 46(18):5954–5967. https://​doi.​org/​10.​1021/​ie070415uCrossRef
58.
Zurück zum Zitat Novak JM, Johnson MG (2019) Elemental and spectroscopic characterization of low-temperature (350°C) lignocellulosic- and manure-based designer biochars and their use as soil amendments. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 37–58CrossRef Novak JM, Johnson MG (2019) Elemental and spectroscopic characterization of low-temperature (350°C) lignocellulosic- and manure-based designer biochars and their use as soil amendments. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 37–58CrossRef
60.
Zurück zum Zitat Li X, Zhao C, Zhang M (2019) Biochar for anionic contaminants removal from water. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 160–143 Li X, Zhao C, Zhang M (2019) Biochar for anionic contaminants removal from water. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, Amsterdam, pp 160–143
61.
Zurück zum Zitat Halder G, Khan AA, Dhawane S (2016) Fluoride sorption onto a steam-activated biochar derived from Cocos nucifera shell. Clean Soil Air Water 44(2):124–133CrossRef Halder G, Khan AA, Dhawane S (2016) Fluoride sorption onto a steam-activated biochar derived from Cocos nucifera shell. Clean Soil Air Water 44(2):124–133CrossRef
62.
Zurück zum Zitat Yang G, Wu L, Xian Q, Shen F, Wu J, Zhang Y (2016) Removal of congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. PLoS One 11(5):e0154562CrossRef Yang G, Wu L, Xian Q, Shen F, Wu J, Zhang Y (2016) Removal of congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. PLoS One 11(5):e0154562CrossRef
63.
Zurück zum Zitat Adams P, Bridgwater T, Lea-Langton A, Ross A, Watson I (2018) Biomass conversion technologies. In: Thornley P, Adams P (eds) Greenhouse gas balances of bioenergy systems. Academic, Cambridge, MA, pp 107–139CrossRef Adams P, Bridgwater T, Lea-Langton A, Ross A, Watson I (2018) Biomass conversion technologies. In: Thornley P, Adams P (eds) Greenhouse gas balances of bioenergy systems. Academic, Cambridge, MA, pp 107–139CrossRef
65.
Zurück zum Zitat Pruszko R (2020) Biodiesel production. In: Dahiya A (ed) Bioenergy, 2nd edn. Academic, Cambridge, MA, pp 491–514CrossRef Pruszko R (2020) Biodiesel production. In: Dahiya A (ed) Bioenergy, 2nd edn. Academic, Cambridge, MA, pp 491–514CrossRef
68.
Zurück zum Zitat Kraisornkachit P, Vivanpatarakij S, Amornraksa S, Simasatitkul L, Assabumrungrat S (2016) Performance evaluation of different combined systems of biochar gasifier, reformer and CO2 capture unit for synthesis gas production. Int J Hydrog Energy 41(31):13408–13418CrossRef Kraisornkachit P, Vivanpatarakij S, Amornraksa S, Simasatitkul L, Assabumrungrat S (2016) Performance evaluation of different combined systems of biochar gasifier, reformer and CO2 capture unit for synthesis gas production. Int J Hydrog Energy 41(31):13408–13418CrossRef
69.
Zurück zum Zitat Palma V, Ruocco C, Martino M, Meloni E, Ricca A (2017) Catalysts for conversion of synthesis gas. In: Dalena F, Basile A, Rossi C (eds) Bioenergy systems for the future. Woodhead Publishing, Cambridge, pp 217–277CrossRef Palma V, Ruocco C, Martino M, Meloni E, Ricca A (2017) Catalysts for conversion of synthesis gas. In: Dalena F, Basile A, Rossi C (eds) Bioenergy systems for the future. Woodhead Publishing, Cambridge, pp 217–277CrossRef
72.
Zurück zum Zitat Zhu L, Yin S, Yin Q, Wang H, Wang S (2015) Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Sci Eng 3(2):126–134CrossRef Zhu L, Yin S, Yin Q, Wang H, Wang S (2015) Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Sci Eng 3(2):126–134CrossRef
77.
Zurück zum Zitat Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80(1):440–447CrossRef Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80(1):440–447CrossRef
78.
Zurück zum Zitat Manchala KR, Sun Y, Zhang D, Wang Z-W (2017) Anaerobic digestion modelling. Adv Bioenergy 2:69–141CrossRef Manchala KR, Sun Y, Zhang D, Wang Z-W (2017) Anaerobic digestion modelling. Adv Bioenergy 2:69–141CrossRef
79.
Zurück zum Zitat Gould MC (2015) Bioenergy and anaerobic digestion. Paper presented at the Bioenergy Gould MC (2015) Bioenergy and anaerobic digestion. Paper presented at the Bioenergy
82.
Zurück zum Zitat Das A, Mondal C (2013) Catalytic effect of tungsten on anaerobic digestion process for biogas production from fruit and vegetable wastes. Int J Sci Eng Technol 2(4):216–221 Das A, Mondal C (2013) Catalytic effect of tungsten on anaerobic digestion process for biogas production from fruit and vegetable wastes. Int J Sci Eng Technol 2(4):216–221
84.
Zurück zum Zitat Duan X, Chen Y, Yan Y, Feng L, Chen Y, Zhou Q (2019) New method for algae comprehensive utilization: algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production. Bioresour Technol 289:121637CrossRef Duan X, Chen Y, Yan Y, Feng L, Chen Y, Zhou Q (2019) New method for algae comprehensive utilization: algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production. Bioresour Technol 289:121637CrossRef
89.
Zurück zum Zitat Tang D (2019) Hardstock triglycerides. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Academic Press, Oxford, pp 128–131CrossRef Tang D (2019) Hardstock triglycerides. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Academic Press, Oxford, pp 128–131CrossRef
90.
Zurück zum Zitat Dijkstra AJ, van Duijn G (2016) Vegetable oils: oil production and processing. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health. Academic Press, Oxford, pp 373–380CrossRef Dijkstra AJ, van Duijn G (2016) Vegetable oils: oil production and processing. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health. Academic Press, Oxford, pp 373–380CrossRef
91.
Zurück zum Zitat Yan Q, Wan C, Liu J, Gao J, Yu F, Zhang J, Cai Z (2013) Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chem 15(6):1631–1640CrossRef Yan Q, Wan C, Liu J, Gao J, Yu F, Zhang J, Cai Z (2013) Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chem 15(6):1631–1640CrossRef
95.
Zurück zum Zitat Cao L, Iris K, Chen SS, Tsang DC, Wang L, Xiong X et al (2018) Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol 252:76–82CrossRef Cao L, Iris K, Chen SS, Tsang DC, Wang L, Xiong X et al (2018) Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol 252:76–82CrossRef
96.
Zurück zum Zitat Liu Q-y, Yang F, Liu Z-h, Li G (2015) Preparation of SnO2–Co3O4/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium. J Ind Eng Chem 26:46–54CrossRef Liu Q-y, Yang F, Liu Z-h, Li G (2015) Preparation of SnO2–Co3O4/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium. J Ind Eng Chem 26:46–54CrossRef
100.
Zurück zum Zitat Michael I, Frontistis Z, Fatta-Kassinos D (2013) Removal of pharmaceuticals from environmentally relevant matrices by advanced oxidation processes (AOPs). In: Petrovic M, Barcelo D, Pérez S (eds) Comprehensive analytical chemistry, vol 62. Amsterdam, Elsevier, pp 345–407 Michael I, Frontistis Z, Fatta-Kassinos D (2013) Removal of pharmaceuticals from environmentally relevant matrices by advanced oxidation processes (AOPs). In: Petrovic M, Barcelo D, Pérez S (eds) Comprehensive analytical chemistry, vol 62. Amsterdam, Elsevier, pp 345–407
101.
Zurück zum Zitat Blaney L (2014) Ozone treatment of antibiotics in water. In: Ahuja S (ed) Water reclamation and sustainability. Elsevier, Boston, pp 265–316CrossRef Blaney L (2014) Ozone treatment of antibiotics in water. In: Ahuja S (ed) Water reclamation and sustainability. Elsevier, Boston, pp 265–316CrossRef
110.
Zurück zum Zitat Duan X, Zhang C, Wang S, Ren N-q, Ho S-H (2020) Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection. Chem Eng J 384:123244CrossRef Duan X, Zhang C, Wang S, Ren N-q, Ho S-H (2020) Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection. Chem Eng J 384:123244CrossRef
111.
Zurück zum Zitat Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544CrossRef Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544CrossRef
114.
Zurück zum Zitat Xu X, Huang H, Zhang Y, Xu Z, Cao X (2019) Biochar as both electron donor and electron shuttle for the reduction transformation of Cr (VI) during its sorption. Environ Pollut 244:423–430CrossRef Xu X, Huang H, Zhang Y, Xu Z, Cao X (2019) Biochar as both electron donor and electron shuttle for the reduction transformation of Cr (VI) during its sorption. Environ Pollut 244:423–430CrossRef
Metadaten
Titel
Biochar as a Catalytic Material
verfasst von
Prachi Singh
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_24