Skip to main content

2021 | OriginalPaper | Buchkapitel

The Role of Group VIII Metals in Hydroconversion of Lignin to Value-Added Chemicals and Biofuels

verfasst von : A. Sreenavya, P. P. Neethu, A. Sakthivel

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomass utilization originating from inedible farming and forest waste, as a renewable feedstock for liquid biofuels and viable products, will have important environmental and social impacts in the future. Lignocellulose, the main nonedible component of biomass, is a primordial element abundantly rich in cellulosic compounds and lignins. The conversion of cellulose and hemicellulose to biofuels and valuable platform chemicals (such as levulinic acid, formic acid, furfural, γ-valerolactone and other derivatives) has long been studied, and great progress has been made in their industrial production. Lignin being a unique raw material has gained enormous attention in the recent years being an important source for sustainable and viable products. The successful conversion of lignin into value-added chemicals involves three main processes: (1) decomposition of lignocellulose, (2) depolymerization (3) upgradation to the desirable chemicals. The choice of catalyst in either homo- or heterogeneous systems is crucial for the effective depolymerization of lignin and upgrading to desirable chemicals. Hydro-processing (hydrogenolysis, hydrogenation, hydrodeoxygenation and hydro-demethoxylation) is a highly preferred, practical method for the depolymerization leading to production of valuable products and drugs. These reactions generally occur over metals, namely, platinum, palladium, ruthenium and nickel. This chapter aims to present a holistic analysis of the role of Group VIII metals in conversion of lignin and lignin-based aromatic monomers. This simplified summary will be useful to researchers for developing heterogeneous catalyst towards effective production of industrially sound products.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen X, Guan W, Tsang CW, Hu H, Liang C (2019) Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions. Catalysts 9:488CrossRef Chen X, Guan W, Tsang CW, Hu H, Liang C (2019) Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions. Catalysts 9:488CrossRef
2.
Zurück zum Zitat Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908CrossRef Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908CrossRef
3.
Zurück zum Zitat Hernández WY, Lauwaert J, Van Der Voort P, Verberckmoes A (2017) Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic-feedstock biorefinery scheme. Green Chem 19:5269–5302CrossRef Hernández WY, Lauwaert J, Van Der Voort P, Verberckmoes A (2017) Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic-feedstock biorefinery scheme. Green Chem 19:5269–5302CrossRef
4.
Zurück zum Zitat Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421CrossRef Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421CrossRef
5.
Zurück zum Zitat Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef
6.
Zurück zum Zitat Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRef Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRef
7.
Zurück zum Zitat Cheng C, Shen D, Gu S, Luo KH (2018) State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Cat Sci Technol 8:6275–6296CrossRef Cheng C, Shen D, Gu S, Luo KH (2018) State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Cat Sci Technol 8:6275–6296CrossRef
8.
Zurück zum Zitat Verma AM, Kishore N (2017) Gas phase conversion of eugenol into various hydrocarbons and platform chemicals. RSC Adv 7:2527–2543CrossRef Verma AM, Kishore N (2017) Gas phase conversion of eugenol into various hydrocarbons and platform chemicals. RSC Adv 7:2527–2543CrossRef
9.
Zurück zum Zitat Yang L, SeshanK LY (2017) A review on thermal chemical reactions of lignin model compounds. Catal Today 298:276–297CrossRef Yang L, SeshanK LY (2017) A review on thermal chemical reactions of lignin model compounds. Catal Today 298:276–297CrossRef
10.
Zurück zum Zitat Nimmanwudipong T, Runnebaum RC, Ebeler SE, Block DE, Gates BC (2012) Upgrading of lignin-derived compounds: reactions of eugenol catalyzed by HY zeolite and by Pt/γ-Al2O3. Catal Lett 142:151–160CrossRef Nimmanwudipong T, Runnebaum RC, Ebeler SE, Block DE, Gates BC (2012) Upgrading of lignin-derived compounds: reactions of eugenol catalyzed by HY zeolite and by Pt/γ-Al2O3. Catal Lett 142:151–160CrossRef
11.
Zurück zum Zitat Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28CrossRef Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28CrossRef
12.
Zurück zum Zitat Bond GC (1968) Periodic variations in the catalytic properties of metals. Platin Met Rev 12:100–105 Bond GC (1968) Periodic variations in the catalytic properties of metals. Platin Met Rev 12:100–105
13.
Zurück zum Zitat Rezaei PS, Shafaghat H, Daud W (2016) Aromatic hydrocarbon production by catalytic pyrolysis of palm kernel shell waste using a bifunctional Fe/HBeta catalyst: effect of lignin-derived phenolics on zeolite deactivation. Green Chem 18:684–1693CrossRef Rezaei PS, Shafaghat H, Daud W (2016) Aromatic hydrocarbon production by catalytic pyrolysis of palm kernel shell waste using a bifunctional Fe/HBeta catalyst: effect of lignin-derived phenolics on zeolite deactivation. Green Chem 18:684–1693CrossRef
14.
Zurück zum Zitat Mullen CA, Boateng AA (2015) Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites. ACS Sustain Chem Eng 3:1623–1631CrossRef Mullen CA, Boateng AA (2015) Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites. ACS Sustain Chem Eng 3:1623–1631CrossRef
15.
Zurück zum Zitat Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2011) Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res 50:849–855CrossRef Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2011) Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res 50:849–855CrossRef
16.
Zurück zum Zitat Zeng J, Yoo CG, Wang F, Pan X, Vermerris W, Tong Z (2015) Biomimetic fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. ChemSusChem 8:861–871CrossRef Zeng J, Yoo CG, Wang F, Pan X, Vermerris W, Tong Z (2015) Biomimetic fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. ChemSusChem 8:861–871CrossRef
17.
Zurück zum Zitat Mottweiler J, Rinesch T, Besson C, Buendia J, Bolm C (2015) Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem 17:5001–5008CrossRef Mottweiler J, Rinesch T, Besson C, Buendia J, Bolm C (2015) Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem 17:5001–5008CrossRef
18.
Zurück zum Zitat Yoshikawa T, Shinohara S, Yagi T, Ryumon N, Nakasaka Y, Tago T, Masuda T (2014) Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl Catal B 146:289–297CrossRef Yoshikawa T, Shinohara S, Yagi T, Ryumon N, Nakasaka Y, Tago T, Masuda T (2014) Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl Catal B 146:289–297CrossRef
19.
Zurück zum Zitat Collard FX, Blin J, Bensakhria A, Valette J (2012) Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrol 95:213–226CrossRef Collard FX, Blin J, Bensakhria A, Valette J (2012) Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrol 95:213–226CrossRef
20.
Zurück zum Zitat Bu Q, Lei H, Zacher AH, Wang L, Ren S, Liang J, Ruan R (2012) A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol 124:470–477CrossRef Bu Q, Lei H, Zacher AH, Wang L, Ren S, Liang J, Ruan R (2012) A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol 124:470–477CrossRef
21.
Zurück zum Zitat Hong Y, Hensley A, McEwen JS, Wang Y (2016) Perspective on catalytic hydrodeoxygenation of biomass pyrolysis oils: essential roles of Fe-based catalysts. Catal Lett 146:1621–1633CrossRef Hong Y, Hensley A, McEwen JS, Wang Y (2016) Perspective on catalytic hydrodeoxygenation of biomass pyrolysis oils: essential roles of Fe-based catalysts. Catal Lett 146:1621–1633CrossRef
22.
Zurück zum Zitat Olcese R, Bettahar MM, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A (2013) Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Appl Catal B Environ 129:528–538CrossRef Olcese R, Bettahar MM, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A (2013) Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Appl Catal B Environ 129:528–538CrossRef
23.
Zurück zum Zitat Olcese RN, François J, Bettahar MM, Petitjean D, Dufour A (2013) Hydrodeoxygenation of guaiacol, a surrogate of lignin pyrolysis vapors, over iron based catalysts: kinetics and modeling of the lignin to aromatics integrated process. Energ Fuel 27:975–984CrossRef Olcese RN, François J, Bettahar MM, Petitjean D, Dufour A (2013) Hydrodeoxygenation of guaiacol, a surrogate of lignin pyrolysis vapors, over iron based catalysts: kinetics and modeling of the lignin to aromatics integrated process. Energ Fuel 27:975–984CrossRef
24.
Zurück zum Zitat Guan G, Kaewpanha M, Hao X, Zhu AM, Kasai Y, Kakuta S, Abudula A (2013) Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell. Bioresour Technol 139:280–284CrossRef Guan G, Kaewpanha M, Hao X, Zhu AM, Kasai Y, Kakuta S, Abudula A (2013) Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell. Bioresour Technol 139:280–284CrossRef
25.
Zurück zum Zitat Liu X, Jia W, Xu G, Zhang Y, Fu Y (2017) Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts. ACS Sustain Chem Eng 5:8594–8601CrossRef Liu X, Jia W, Xu G, Zhang Y, Fu Y (2017) Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts. ACS Sustain Chem Eng 5:8594–8601CrossRef
26.
Zurück zum Zitat Xie W, Liang J, Morgan HM Jr, Zhang X, Wang K, Mao H, Bu Q (2018) Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil. J Anal Appl Pyrol 132:163–170CrossRef Xie W, Liang J, Morgan HM Jr, Zhang X, Wang K, Mao H, Bu Q (2018) Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil. J Anal Appl Pyrol 132:163–170CrossRef
27.
Zurück zum Zitat Wu C, Wang Z, Huang J, Williams PT (2013) Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel 106:697–706CrossRef Wu C, Wang Z, Huang J, Williams PT (2013) Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel 106:697–706CrossRef
28.
Zurück zum Zitat Akubo K, Nahil MA, Williams PT (2019) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Inst 92:1987–1996CrossRef Akubo K, Nahil MA, Williams PT (2019) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Inst 92:1987–1996CrossRef
29.
Zurück zum Zitat Schmitt CC, Raffelt K, Zimina A, Krause B, Otto T, Rapp M, Dahmen N (2018) Hydrotreatment of fast pyrolysis bio-oil fractions over nickel-based catalyst. Top Catal 61:1769–1782CrossRef Schmitt CC, Raffelt K, Zimina A, Krause B, Otto T, Rapp M, Dahmen N (2018) Hydrotreatment of fast pyrolysis bio-oil fractions over nickel-based catalyst. Top Catal 61:1769–1782CrossRef
30.
Zurück zum Zitat Ben H, Ragauskas AJ (2011) Pyrolysis of kraft lignin with additives. Energy Fuels 25:4662–4668CrossRef Ben H, Ragauskas AJ (2011) Pyrolysis of kraft lignin with additives. Energy Fuels 25:4662–4668CrossRef
31.
Zurück zum Zitat Ma T, Liu Y, Yu H (2017) Catalytic characteristics of pyrolysis volatile matter from biomass/biomass components on a novel Ni-based catalyst supported by iron slag. J Renew Sustain Energy 9:063101CrossRef Ma T, Liu Y, Yu H (2017) Catalytic characteristics of pyrolysis volatile matter from biomass/biomass components on a novel Ni-based catalyst supported by iron slag. J Renew Sustain Energy 9:063101CrossRef
32.
Zurück zum Zitat Yin W, Venderbosch RH, He S, Bykova MV, Khromova SA, Yakovlev VA, Heeres HJ (2017) Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids. Biomass Convers Bior 7:361–376CrossRef Yin W, Venderbosch RH, He S, Bykova MV, Khromova SA, Yakovlev VA, Heeres HJ (2017) Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids. Biomass Convers Bior 7:361–376CrossRef
33.
Zurück zum Zitat Alda-Onggar M, Mäki-Arvela P, Aho A, Simakova IL, Murzin DY (2019) Hydrodeoxygenation of phenolic model compounds over zirconia supported Ir and Ni-catalysts. React Kinet Mech Cat 126:737–759CrossRef Alda-Onggar M, Mäki-Arvela P, Aho A, Simakova IL, Murzin DY (2019) Hydrodeoxygenation of phenolic model compounds over zirconia supported Ir and Ni-catalysts. React Kinet Mech Cat 126:737–759CrossRef
34.
Zurück zum Zitat Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal 4:1574–1583CrossRef Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal 4:1574–1583CrossRef
35.
Zurück zum Zitat Yadagiri J, Koppadi KS, Enumula SS, Vakati V, Kamaraju SRR, Burri DR, Somaiah PV (2018) Ni/KIT-6 catalysts for hydrogenolysis of lignin-derived diphenyl ether. J Chem Sci 130:106CrossRef Yadagiri J, Koppadi KS, Enumula SS, Vakati V, Kamaraju SRR, Burri DR, Somaiah PV (2018) Ni/KIT-6 catalysts for hydrogenolysis of lignin-derived diphenyl ether. J Chem Sci 130:106CrossRef
36.
Zurück zum Zitat Ma H, Li H, Zhao W, Li L, Liu S, Long J, Li X (2019) Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate. Green Chem 21:658–668CrossRef Ma H, Li H, Zhao W, Li L, Liu S, Long J, Li X (2019) Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate. Green Chem 21:658–668CrossRef
37.
Zurück zum Zitat Zhang C, Lu J, Zhang X, MacArthur K, Heggen M, Li H, Wang F (2016) Cleavage of the lignin β-O-4 ether bond via a dehydroxylation–hydrogenation strategy over a NiMosulfide catalyst. Green Chem 18:6545–6555CrossRef Zhang C, Lu J, Zhang X, MacArthur K, Heggen M, Li H, Wang F (2016) Cleavage of the lignin β-O-4 ether bond via a dehydroxylation–hydrogenation strategy over a NiMosulfide catalyst. Green Chem 18:6545–6555CrossRef
38.
Zurück zum Zitat Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci 6:994–1007CrossRef Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci 6:994–1007CrossRef
39.
Zurück zum Zitat Wang X, Rinaldi R (2016) Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catal Today 269:48–55CrossRef Wang X, Rinaldi R (2016) Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catal Today 269:48–55CrossRef
40.
Zurück zum Zitat Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, Liang C (2015) Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Ind Eng Chem Res 54:2302–2310CrossRef Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, Liang C (2015) Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Ind Eng Chem Res 54:2302–2310CrossRef
41.
Zurück zum Zitat Xu C, Tang SF, Sun X, Sun Y, Li G, Qi J, Li X (2017) Investigation on the cleavage of β-O-4 linkage in dimeric lignin model compound over nickel catalysts supported on ZnO-Al2O3 composite oxides with varying Zn/Al ratios. Catal Today 298:89–98CrossRef Xu C, Tang SF, Sun X, Sun Y, Li G, Qi J, Li X (2017) Investigation on the cleavage of β-O-4 linkage in dimeric lignin model compound over nickel catalysts supported on ZnO-Al2O3 composite oxides with varying Zn/Al ratios. Catal Today 298:89–98CrossRef
42.
Zurück zum Zitat Long J, Shu S, Wu Q, Yuan Z, Wang T, Xu Y, Ma L (2015) Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO. Energy Convers Manag 105:570–577CrossRef Long J, Shu S, Wu Q, Yuan Z, Wang T, Xu Y, Ma L (2015) Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO. Energy Convers Manag 105:570–577CrossRef
43.
Zurück zum Zitat Jin S, Xiao Z, Li C, Chen X, Wang L, Xing J, Liang C (2014) Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts. Catal Today 234:125–132CrossRef Jin S, Xiao Z, Li C, Chen X, Wang L, Xing J, Liang C (2014) Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts. Catal Today 234:125–132CrossRef
44.
Zurück zum Zitat Sankaranarayanan TM, Berenguer A, Ochoa-Hernández C, Moreno I, Jana P, Coronado JM, Pizarro P (2015) Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: effect of metal and support properties. Catal. Today 243:163–172CrossRef Sankaranarayanan TM, Berenguer A, Ochoa-Hernández C, Moreno I, Jana P, Coronado JM, Pizarro P (2015) Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: effect of metal and support properties. Catal. Today 243:163–172CrossRef
45.
Zurück zum Zitat Zhang X, Zhang Q, Wang T, Ma L, Yu Y, Chen L (2013) Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts. Bioresources 134:73–80CrossRef Zhang X, Zhang Q, Wang T, Ma L, Yu Y, Chen L (2013) Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts. Bioresources 134:73–80CrossRef
46.
Zurück zum Zitat Verziu M, Tirsoaga A, Cojocaru B, Bucur C, Tudora B, Richel A, Mikkola JP (2018) Hydrogenolysis of lignin over Ru-based catalysts: the role of the ruthenium in a lignin fragmentation process. Mol Catal 450:65–76CrossRef Verziu M, Tirsoaga A, Cojocaru B, Bucur C, Tudora B, Richel A, Mikkola JP (2018) Hydrogenolysis of lignin over Ru-based catalysts: the role of the ruthenium in a lignin fragmentation process. Mol Catal 450:65–76CrossRef
47.
Zurück zum Zitat Wu H, Song J, Xie C, Wu C, Chen C, Han B (2018) Efficient and mild transfer hydrogenolytic cleavage of aromatic ether bonds in lignin-derived compounds over Ru/C. ACS Sustain Chem Eng 6:2872–2877CrossRef Wu H, Song J, Xie C, Wu C, Chen C, Han B (2018) Efficient and mild transfer hydrogenolytic cleavage of aromatic ether bonds in lignin-derived compounds over Ru/C. ACS Sustain Chem Eng 6:2872–2877CrossRef
48.
Zurück zum Zitat Gomez-Monedero B, Faria J, BimbelaF RMP (2017) Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts. Biomass Convers Bior 7:385–398CrossRef Gomez-Monedero B, Faria J, BimbelaF RMP (2017) Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts. Biomass Convers Bior 7:385–398CrossRef
49.
Zurück zum Zitat Limarta SO, Ha JM, Park YK, Lee H, Suh DJ, Jae J (2018) Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J Ind Eng Chem 57:45–54CrossRef Limarta SO, Ha JM, Park YK, Lee H, Suh DJ, Jae J (2018) Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J Ind Eng Chem 57:45–54CrossRef
50.
Zurück zum Zitat Chen MY, Huang YB, Pang H, Liu XX, Fu Y (2015) Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems. Green Chem 17:1710–1717CrossRef Chen MY, Huang YB, Pang H, Liu XX, Fu Y (2015) Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems. Green Chem 17:1710–1717CrossRef
51.
Zurück zum Zitat Bjelić A, Grilc M, Gyergyek S, Kocjan A, Makovec D, Ikozar B (2018) Catalytic hydrogenation, hydrodeoxygenation, and hydrocracking processes of a lignin monomer model compound eugenol over magnetic Ru/C–Fe2O3 and mechanistic reaction microkinetics. Catalysts 8:425CrossRef Bjelić A, Grilc M, Gyergyek S, Kocjan A, Makovec D, Ikozar B (2018) Catalytic hydrogenation, hydrodeoxygenation, and hydrocracking processes of a lignin monomer model compound eugenol over magnetic Ru/C–Fe2O3 and mechanistic reaction microkinetics. Catalysts 8:425CrossRef
52.
Zurück zum Zitat Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading technology review. Bioenergy Res 6:1183–1204CrossRef Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading technology review. Bioenergy Res 6:1183–1204CrossRef
53.
Zurück zum Zitat Ohta H, Kobayashi H, Hara K, Fukuoka A (2011) Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chem Commun 47:12209–12211CrossRef Ohta H, Kobayashi H, Hara K, Fukuoka A (2011) Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chem Commun 47:12209–12211CrossRef
54.
Zurück zum Zitat Mu W, Ben H, Du X, Zhang X, Hu F, Liu W, Deng Y (2014) Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds. Bioresour Technol 173:6–10CrossRef Mu W, Ben H, Du X, Zhang X, Hu F, Liu W, Deng Y (2014) Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds. Bioresour Technol 173:6–10CrossRef
55.
Zurück zum Zitat Lin YC, Li CL, Wan HP, Lee HT, Liu CF (2011) Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuel 25:890–896CrossRef Lin YC, Li CL, Wan HP, Lee HT, Liu CF (2011) Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuel 25:890–896CrossRef
56.
Zurück zum Zitat He Y, Bie Y, Lehtonen J, Liu R, Cai J (2019) Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: process optimization and reaction kinetics. Fuel 239:1015–1027CrossRef He Y, Bie Y, Lehtonen J, Liu R, Cai J (2019) Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: process optimization and reaction kinetics. Fuel 239:1015–1027CrossRef
57.
Zurück zum Zitat Nan W, Krishna CR, Kim TJ, Wang LJ, Mahajan D (2014) Catalytic upgrading of switchgrass-derived pyrolysis oil using supported ruthenium and rhodium catalysts. Energ Fuel 28:4588–4595CrossRef Nan W, Krishna CR, Kim TJ, Wang LJ, Mahajan D (2014) Catalytic upgrading of switchgrass-derived pyrolysis oil using supported ruthenium and rhodium catalysts. Energ Fuel 28:4588–4595CrossRef
58.
Zurück zum Zitat Jie-wang Y, Gui-zhen F, Chun-de J (2012) Hydrogenation of alkali lignin catalyzed by Pd/C. Apcbee Procedia 3:53–59CrossRef Jie-wang Y, Gui-zhen F, Chun-de J (2012) Hydrogenation of alkali lignin catalyzed by Pd/C. Apcbee Procedia 3:53–59CrossRef
59.
Zurück zum Zitat Gao F, Webb JD, Sorek H, WemmerDE HJF (2016) Fragmentation of lignin samples with commercial Pd/C under ambient pressure of hydrogen. ACS Catal 6:7385–7392CrossRef Gao F, Webb JD, Sorek H, WemmerDE HJF (2016) Fragmentation of lignin samples with commercial Pd/C under ambient pressure of hydrogen. ACS Catal 6:7385–7392CrossRef
60.
Zurück zum Zitat Galkin MV, Sawadjoon S, Rohde V, DawangeM SJS (2014) Mild heterogeneous palladium-catalyzed cleavage of β-O-4′-ether linkages of lignin model compounds and native lignin in air. ChemCatChem 6:179–184CrossRef Galkin MV, Sawadjoon S, Rohde V, DawangeM SJS (2014) Mild heterogeneous palladium-catalyzed cleavage of β-O-4′-ether linkages of lignin model compounds and native lignin in air. ChemCatChem 6:179–184CrossRef
61.
Zurück zum Zitat Galkin MV, Dahlstrand C, Samec JS (2015) Mild and robust redox-neutral Pd/C-catalyzed Lignol β-O-4′ bond cleavage through a low-energy-barrier pathway. ChemSusChem 8:2187–2192CrossRef Galkin MV, Dahlstrand C, Samec JS (2015) Mild and robust redox-neutral Pd/C-catalyzed Lignol β-O-4′ bond cleavage through a low-energy-barrier pathway. ChemSusChem 8:2187–2192CrossRef
62.
Zurück zum Zitat Liguori L, Barth T (2011) Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water. J Anal Appl Pyrol 92:477–484CrossRef Liguori L, Barth T (2011) Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water. J Anal Appl Pyrol 92:477–484CrossRef
63.
Zurück zum Zitat Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17:5009–5018CrossRef Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17:5009–5018CrossRef
64.
Zurück zum Zitat Qin Y, Wang H, Ruan H, Feng M, Yang B (2018) High catalytic efficiency of lignin depolymerization over low Pd-zeolite Y loading at mild temperature. Front Energy Res 6:2CrossRef Qin Y, Wang H, Ruan H, Feng M, Yang B (2018) High catalytic efficiency of lignin depolymerization over low Pd-zeolite Y loading at mild temperature. Front Energy Res 6:2CrossRef
65.
Zurück zum Zitat Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Łukasik RM, Anastas PT (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233CrossRef Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Łukasik RM, Anastas PT (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233CrossRef
66.
Zurück zum Zitat Zhang JW, Cai Y, Lu GP, Cai C (2016) Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd–Ni bimetallic nanoparticles supported on ZrO2. Green Chem 18:6229–6235CrossRef Zhang JW, Cai Y, Lu GP, Cai C (2016) Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd–Ni bimetallic nanoparticles supported on ZrO2. Green Chem 18:6229–6235CrossRef
67.
Zurück zum Zitat Haibach MC, Lease N, Goldman AS (2014) Catalytic cleavage of ether C-O bonds by pincer iridium complexes. Angew Chem 53:10160–10163CrossRef Haibach MC, Lease N, Goldman AS (2014) Catalytic cleavage of ether C-O bonds by pincer iridium complexes. Angew Chem 53:10160–10163CrossRef
68.
Zurück zum Zitat Lancefield CS, Teunissen LW, WeckhuysenBM BPC (2018) Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. Green Chem 20:3214–3221CrossRef Lancefield CS, Teunissen LW, WeckhuysenBM BPC (2018) Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. Green Chem 20:3214–3221CrossRef
69.
Zurück zum Zitat Jongerius AL, BruijnincxPC WBM (2013) Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. Green Chem 15:3049–3056CrossRef Jongerius AL, BruijnincxPC WBM (2013) Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. Green Chem 15:3049–3056CrossRef
70.
Zurück zum Zitat Besse X, Schuurman Y, Guilhaume N (2017) Reactivity of lignin model compounds through hydrogen transfer catalysis in ethanol/water mixtures. Appl Catal B 209:265–272CrossRef Besse X, Schuurman Y, Guilhaume N (2017) Reactivity of lignin model compounds through hydrogen transfer catalysis in ethanol/water mixtures. Appl Catal B 209:265–272CrossRef
71.
Zurück zum Zitat Hu J, Zhang S, Xiao R, Jiang X, Wang Y, Sun Y, Lu P (2019) Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresour Technol 279:228–233CrossRef Hu J, Zhang S, Xiao R, Jiang X, Wang Y, Sun Y, Lu P (2019) Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresour Technol 279:228–233CrossRef
72.
Zurück zum Zitat Xu W, Miller SJ, Agrawal PK, Jones CW (2012) Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem 5:667–675CrossRef Xu W, Miller SJ, Agrawal PK, Jones CW (2012) Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem 5:667–675CrossRef
73.
Zurück zum Zitat Ouyang X, Huang X, Zhu J, Boot MD, Hensen EJ (2019) Catalytic conversion of lignin in woody biomass into phenolic monomers in methanol/water mixtures without external hydrogen. ACS Sustain Chem Eng 7:13764–13773CrossRef Ouyang X, Huang X, Zhu J, Boot MD, Hensen EJ (2019) Catalytic conversion of lignin in woody biomass into phenolic monomers in methanol/water mixtures without external hydrogen. ACS Sustain Chem Eng 7:13764–13773CrossRef
74.
Zurück zum Zitat Shimanskaya E, Sulman M, Tiamina I, Sidorov A, MolchanovV SE (2019) Catalytic hydrogenolysis of softwood sawdust. Chem Eng Trans 74:229–234 Shimanskaya E, Sulman M, Tiamina I, Sidorov A, MolchanovV SE (2019) Catalytic hydrogenolysis of softwood sawdust. Chem Eng Trans 74:229–234
76.
Zurück zum Zitat Bouxin FP, McVeigh A, Tran F, Westwood NJ, Jarvis MC, Jackson SD (2015) Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1—impact of the lignin structure. Green Chem 17:1235–1242CrossRef Bouxin FP, McVeigh A, Tran F, Westwood NJ, Jarvis MC, Jackson SD (2015) Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1—impact of the lignin structure. Green Chem 17:1235–1242CrossRef
Metadaten
Titel
The Role of Group VIII Metals in Hydroconversion of Lignin to Value-Added Chemicals and Biofuels
verfasst von
A. Sreenavya
P. P. Neethu
A. Sakthivel
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_23