Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2021

27.02.2020 | Review Article

Biodiesel continuous esterification process experimental study and equipment design

verfasst von: Huiwen Li, Pengmei Lv, Zhongming Wang, Changlin Miao, Zhenhong Yuan

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biodiesel is a particularly attractive renewable fuel because it can be used in existing engines, it is environmentally friendly and it is readily synthesized from animal fats and vegetable oils. Waste oil combined with heterogeneous catalysts offers exciting possibilities for improving the economics of biodiesel synthesis. The effects of methanol influx rate, reaction temperature, catalysis dosage and operation approaches on pre-esterification deacidification of trap grease were studied in a laboratory with solid acid catalysts. The results showed the maximum acid value reduction efficiency (96.73%) was obtained, and the acid value decreased sharply (from 120 to 3.92 mgKOH g−1) at a methanol influx rate of 0.825 mL/m in, a reaction temperature of 115 °C, a catalysis dosage of 2.5%, and a reaction time of 2 h using 50 g of oil. An acid value of 0.89 mgKOH g−1 and an esterification rate of 99.26% were obtained. When the operational approach was changed to a methanol influx of 1.32 mL/min (methanol to oil molar ratio 6: 1), a reaction time of 30 min under pressure, the methanol influx rate changed to 0.825 mL/min, and then, coupled methanol recovered and purified immediately at atmospheric pressure. A continuous esterification deacidification equipment that is suitable for factory pretreatment deacidification of biodiesel produced from trap grease with a high acid value was designed according to laboratory experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atabani AE, Silitonga AS, Badruddin IA et al (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics [J]. Renew Sust Energ Rev 16(4):2070–2093CrossRef Atabani AE, Silitonga AS, Badruddin IA et al (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics [J]. Renew Sust Energ Rev 16(4):2070–2093CrossRef
2.
Zurück zum Zitat Fang D, Yang J, Jiao C (2011) Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal 1(1):42–47CrossRef Fang D, Yang J, Jiao C (2011) Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal 1(1):42–47CrossRef
3.
Zurück zum Zitat Wei TT, Fang W, Eering DL et al (2003) Present situation and prospect for bioenergy. Modern Chemical Industry 23(9):8–12 Wei TT, Fang W, Eering DL et al (2003) Present situation and prospect for bioenergy. Modern Chemical Industry 23(9):8–12
4.
Zurück zum Zitat Silitonga AS, Ong HC, Mahlia TMI et al (2014) Biodiesel conversion from high FFA crude Jatropha Curcas, Calophyllum Inophyllum and Ceiba Pentandra oil. Energy Procedia 61:480–483CrossRef Silitonga AS, Ong HC, Mahlia TMI et al (2014) Biodiesel conversion from high FFA crude Jatropha Curcas, Calophyllum Inophyllum and Ceiba Pentandra oil. Energy Procedia 61:480–483CrossRef
5.
Zurück zum Zitat Zhang Y, Dubé MA, Mclean DD et al (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240CrossRef Zhang Y, Dubé MA, Mclean DD et al (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240CrossRef
6.
Zurück zum Zitat Balat M (2011) Potential alternatives to edible oils for biodiesel production – a review of current work. Energy Convers Manag 52(2):1479–1492CrossRef Balat M (2011) Potential alternatives to edible oils for biodiesel production – a review of current work. Energy Convers Manag 52(2):1479–1492CrossRef
7.
Zurück zum Zitat Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653CrossRef Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653CrossRef
8.
Zurück zum Zitat Anwar F, Rashid U, Ashraf M et al (2010) Okra (Hibiscus esculentus) seed oil for biodiesel production. Appl Energy 87(3):779–785CrossRef Anwar F, Rashid U, Ashraf M et al (2010) Okra (Hibiscus esculentus) seed oil for biodiesel production. Appl Energy 87(3):779–785CrossRef
9.
Zurück zum Zitat Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97(4):671–678CrossRef Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97(4):671–678CrossRef
10.
Zurück zum Zitat Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721CrossRef Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721CrossRef
11.
Zurück zum Zitat Sheinbaum-Pardo C, Calderón-Irazoque A, Ramírez-Suárez M (2013) Potential of biodiesel from waste cooking oil in Mexico. Biomass Bioenergy 56:230–238CrossRef Sheinbaum-Pardo C, Calderón-Irazoque A, Ramírez-Suárez M (2013) Potential of biodiesel from waste cooking oil in Mexico. Biomass Bioenergy 56:230–238CrossRef
12.
Zurück zum Zitat Pinzi S, Garcia IL, Lopez-Gimenez FJ et al (2009) The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. ENERGY & FUELS 23(5):2325–2341CrossRef Pinzi S, Garcia IL, Lopez-Gimenez FJ et al (2009) The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. ENERGY & FUELS 23(5):2325–2341CrossRef
13.
Zurück zum Zitat Nair P, Singh B, Upadhyay SN et al (2012) Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix mereterix as a heterogeneous catalyst. J Clean Prod 29-30:82–90CrossRef Nair P, Singh B, Upadhyay SN et al (2012) Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix mereterix as a heterogeneous catalyst. J Clean Prod 29-30:82–90CrossRef
14.
Zurück zum Zitat Hayyan A, Alam MZ, Mirghani MES et al (2010) Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresource Technology 101(20):7804–7811CrossRef Hayyan A, Alam MZ, Mirghani MES et al (2010) Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresource Technology 101(20):7804–7811CrossRef
15.
Zurück zum Zitat Ullah Z, Bustam MA, Man Z (2015) Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew Energy 77:521–526CrossRef Ullah Z, Bustam MA, Man Z (2015) Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew Energy 77:521–526CrossRef
16.
Zurück zum Zitat Canakci M, Gerpen JV (1999) Biodiesel production VIAACID CATALYSIS. Transactions of the ASAE. 42(5):1203–1210 Canakci M, Gerpen JV (1999) Biodiesel production VIAACID CATALYSIS. Transactions of the ASAE. 42(5):1203–1210
17.
Zurück zum Zitat Meher LC, Dharmagadda VSS, Naik SN (2006) Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresource Technology 97(12):1392–1397CrossRef Meher LC, Dharmagadda VSS, Naik SN (2006) Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresource Technology 97(12):1392–1397CrossRef
18.
Zurück zum Zitat Bournay L, Casanave D, Delfort B et al (2014) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Int J Chem React Eng 106(1):190–192 Bournay L, Casanave D, Delfort B et al (2014) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Int J Chem React Eng 106(1):190–192
19.
Zurück zum Zitat Shimada Y, Watanabe Y, Sugihara A et al (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17(3–5):133–142CrossRef Shimada Y, Watanabe Y, Sugihara A et al (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17(3–5):133–142CrossRef
20.
Zurück zum Zitat Nie K, Xie F, Wang F et al (2006) Lipase catalysed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym 43(1–4):142–147CrossRef Nie K, Xie F, Wang F et al (2006) Lipase catalysed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym 43(1–4):142–147CrossRef
21.
Zurück zum Zitat Chen W, Wang C, Ying W et al (2009) Continuous production of biodiesel via supercritical methanol Transesterification in a tubular reactor. Part 1: Thermophysical and transitive properties of supercritical methanol. Energy Fuel 23(1):526–532CrossRef Chen W, Wang C, Ying W et al (2009) Continuous production of biodiesel via supercritical methanol Transesterification in a tubular reactor. Part 1: Thermophysical and transitive properties of supercritical methanol. Energy Fuel 23(1):526–532CrossRef
22.
Zurück zum Zitat Kiss AA, Dimian AC, Rothenberg G (2006) Solid acid catalysts for biodiesel production-towards sustainable energy. Adv Synth Catal 348(1–2):75–81CrossRef Kiss AA, Dimian AC, Rothenberg G (2006) Solid acid catalysts for biodiesel production-towards sustainable energy. Adv Synth Catal 348(1–2):75–81CrossRef
23.
Zurück zum Zitat Lianhua L, Pengmei L, Wen L et al (2010) Esterification of high FFA tung oil with solid acid catalyst in fixed bed reactor. Biomass Bioenergy 34(4):496–499CrossRef Lianhua L, Pengmei L, Wen L et al (2010) Esterification of high FFA tung oil with solid acid catalyst in fixed bed reactor. Biomass Bioenergy 34(4):496–499CrossRef
24.
Zurück zum Zitat Su F, Guo Y (2014) Advancements in solid acid catalysts for biodiesel production. Green Chem 16(6):2934–2957CrossRef Su F, Guo Y (2014) Advancements in solid acid catalysts for biodiesel production. Green Chem 16(6):2934–2957CrossRef
25.
Zurück zum Zitat Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Transactions of the Asae. 44(6):1429–1436 Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Transactions of the Asae. 44(6):1429–1436
26.
Zurück zum Zitat Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34CrossRef Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34CrossRef
Metadaten
Titel
Biodiesel continuous esterification process experimental study and equipment design
verfasst von
Huiwen Li
Pengmei Lv
Zhongming Wang
Changlin Miao
Zhenhong Yuan
Publikationsdatum
27.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00623-2

Weitere Artikel der Ausgabe 6/2021

Biomass Conversion and Biorefinery 6/2021 Zur Ausgabe