Skip to main content
Erschienen in: International Journal of Computer Vision 2/2024

04.09.2023

Blind Image Deblurring with Unknown Kernel Size and Substantial Noise

verfasst von: Zhong Zhuang, Taihui Li, Hengkang Wang, Ju Sun

Erschienen in: International Journal of Computer Vision | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Blind image deblurring (BID) has been extensively studied in computer vision and adjacent fields. Modern methods for BID can be grouped into two categories: single-instance methods that deal with individual instances using statistical inference and numerical optimization, and data-driven methods that train deep-learning models to deblur future instances directly. Data-driven methods can be free from the difficulty in deriving accurate blur models, but are fundamentally limited by the diversity and quality of the training data—collecting sufficiently expressive and realistic training data is a standing challenge. In this paper, we focus on single-instance methods that remain competitive and indispensable. However, most such methods do not prescribe how to deal with unknown kernel size and substantial noise, precluding practical deployment. Indeed, we show that several state-of-the-art (SOTA) single-instance methods are unstable when the kernel size is overspecified, and/or the noise level is high. On the positive side, we propose a practical BID method that is stable against both, the first of its kind. Our method builds on the recent ideas of solving inverse problems by integrating physical models and structured deep neural networks, without extra training data. We introduce several crucial modifications to achieve the desired stability. Extensive empirical tests on standard synthetic datasets, as well as real-world NTIRE2020 and RealBlur datasets, show the superior effectiveness and practicality of our BID method compared to SOTA single-instance as well as data-driven methods. The code of our method is available at https://​github.​com/​sun-umn/​Blind-Image-Deblurring.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Indeed, by Young’s convolution inequality and the fact \({\Vert {\varvec{k}} \Vert _1 = 1}\), https://static-content.springer.com/image/art%3A10.1007%2Fs11263-023-01883-x/MediaObjects/11263_2023_1883_IEq67_HTML.gif .
 
2
See also similar ideas for the inverse filtering approach in Cabrelli (1985) and Sun and Donoho (2021).
 
3
In particular, if they form a measure-zero set.
 
4
The result in Eq. (11) assumes a circular convolution model: \(\varvec{y} = \varvec{a} \circledast \varvec{z}\), but it is well known that the linear convolution can be written as circular convolution by appropriate zero-padding to the two convolving components.
 
5
We note in passing that the reason we do not use FBC directly is that it may be misleading: the correspondence ratio as they define it can be larger than 1, so in principle the average approaching 1 does not imply that recovery is good. When checking their code (https://​github.​com/​shizenglin/​Measure-and-Control-Spectral-Bias), we find that they actually truncate values greater than 1, which potentially make the metric more misleading.
 
6
The existing synthetic BID datasets are too small to support training data-driven methods.
 
9
LAI16 has 4 trajectories to synthesize non-uniform motion blur also, which we do not consider in this paper. Moreover, it also includes 100 real-world blurry images without groundtruth kernels.
 
10
Available at (registration needed to download the dataset): https://​competitions.​codalab.​org/​competitions/​22233#learn_​the_​details. We suspect that this is a superset of the REDS (REalistic and Dynamic Scenes) dataset (available at https://​seungjunnah.​github.​io/​Datasets/​reds.​html), at least with the same generation procedure as that of REDS.
 
12
NTIRE2020 is developed for data-driven approaches that require an extensive training set.
 
18
In DONG17 the loss consists in applying \(h(z) = z^2/2 - \log {(a+e^{bz^2})}/(2b)\) element-wise to \(\varvec{y} - {\varvec{k}} *{\varvec{x}}\), where \(a, b > 0\) and so that \(h(z) \le 0\). Note that \(h(z) \sim O(z^2)\) as \(z \rightarrow 0\), and h(z) approaches the constant 0 when z is large.
 
Literatur
Zurück zum Zitat Aljadaany, R., Pal, D. K., & Savvides, M. (2019). Douglas-rachford networks: Learning both the image prior and data fidelity terms for blind image deconvolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. https://doi.org/10.1109/cvpr.2019.01048 Aljadaany, R., Pal, D. K., & Savvides, M. (2019). Douglas-rachford networks: Learning both the image prior and data fidelity terms for blind image deconvolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. https://​doi.​org/​10.​1109/​cvpr.​2019.​01048
Zurück zum Zitat Bostan, E., Heckel, R., Chen, M., Kellman, M., & Waller, L. (2020). Deep phase decoder: Self-calibrating phase microscopy with an untrained deep neural network. Optica, 7(6), 559–562.CrossRef Bostan, E., Heckel, R., Chen, M., Kellman, M., & Waller, L. (2020). Deep phase decoder: Self-calibrating phase microscopy with an untrained deep neural network. Optica, 7(6), 559–562.CrossRef
Zurück zum Zitat Cheung, S. C., Shin, J. Y., Lau, Y., Chen, Z., Sun, J., Zhang, Y., Müller, M. A., Eremin, I. M., Wright, J. N., & Pasupathy, A. N.(2020). Dictionary learning in fourier-transform scanning tunneling spectroscopy. Nature Communications 11(1):1081. https://doi.org/10.1038/s41467-020-14633-1 Cheung, S. C., Shin, J. Y., Lau, Y., Chen, Z., Sun, J., Zhang, Y., Müller, M. A., Eremin, I. M., Wright, J. N., & Pasupathy, A. N.(2020). Dictionary learning in fourier-transform scanning tunneling spectroscopy. Nature Communications 11(1):1081. https://​doi.​org/​10.​1038/​s41467-020-14633-1
Zurück zum Zitat Ekanadham, C., Tranchina, D., Simoncelli, E.(2011). A blind sparse deconvolution method for neural spike identification. In Advances in neural information processing systems Ekanadham, C., Tranchina, D., Simoncelli, E.(2011). A blind sparse deconvolution method for neural spike identification. In Advances in neural information processing systems
Zurück zum Zitat Heckel, R., Hand, P. (2019). Deep decoder: Concise image representations from untrained non-convolutional networks. In International conference on learning representations Heckel, R., Hand, P. (2019). Deep decoder: Concise image representations from untrained non-convolutional networks. In International conference on learning representations
Zurück zum Zitat Heckel, R., & Soltanolkotabi, M. (2019). Denoising and regularization via exploiting the structural bias of convolutional generators. arXiv preprint arXiv:1910.14634 Heckel, R., & Soltanolkotabi, M. (2019). Denoising and regularization via exploiting the structural bias of convolutional generators. arXiv preprint arXiv:​1910.​14634
Zurück zum Zitat Heckel, R., & Soltanolkotabi, M. (2020). Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation. arXiv:2005.03991 Heckel, R., & Soltanolkotabi, M. (2020). Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation. arXiv:​2005.​03991
Zurück zum Zitat Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., & Harmeling, S.(2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In European conference on computer vision (ECCV), pp. 27–40. Springer Berlin Heidelberg . https://doi.org/10.1007/978-3-642-33786-4_3 Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., & Harmeling, S.(2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In European conference on computer vision (ECCV), pp. 27–40. Springer Berlin Heidelberg . https://​doi.​org/​10.​1007/​978-3-642-33786-4_​3
Zurück zum Zitat Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887 Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887
Zurück zum Zitat Lawrence, H., Bramherzig, D., Li, H., Eickenberg, M., & Gabrié, M. (2020). Phase retrieval with holography and untrained priors: Tackling the challenges of low-photon nanoscale imaging. arXiv preprint arXiv:2012.07386 Lawrence, H., Bramherzig, D., Li, H., Eickenberg, M., & Gabrié, M. (2020). Phase retrieval with holography and untrained priors: Tackling the challenges of low-photon nanoscale imaging. arXiv preprint arXiv:​2012.​07386
Zurück zum Zitat Li, T., Wang, H., Zhuang, Z., & Sun, J. (2023). Deep random projector: Accelerated deep image prior. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 18176–18185. Li, T., Wang, H., Zhuang, Z., & Sun, J. (2023). Deep random projector: Accelerated deep image prior. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 18176–18185.
Zurück zum Zitat Li, T., Zhuang, Z., Liang, H., Peng, L., Wang, H., & Sun, J. (2021). Self-validation: Early stopping for single-instance deep generative priors. In British Machine Vision Conference (BMVC). Li, T., Zhuang, Z., Liang, H., Peng, L., Wang, H., & Sun, J. (2021). Self-validation: Early stopping for single-instance deep generative priors. In British Machine Vision Conference (BMVC).
Zurück zum Zitat Li, Y., Lee, K., & Bresler, Y.(2015). A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models. arXiv:1501.06120 Li, Y., Lee, K., & Bresler, Y.(2015). A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models. arXiv:​1501.​06120
Zurück zum Zitat Li, Y., Tofighi, M., Geng, J., Monga, V., & Eldar, Y. C. (2019). Deep algorithm unrolling for blind image deblurring. arXiv:1902.03493 Li, Y., Tofighi, M., Geng, J., Monga, V., & Eldar, Y. C. (2019). Deep algorithm unrolling for blind image deblurring. arXiv:​1902.​03493
Zurück zum Zitat Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., & Lee, K. M. (2019). NTIRE 2019 challenge on video deblurring and super-resolution: Dataset and study. In 2019 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE . https://doi.org/10.1109/cvprw.2019.00251 Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., & Lee, K. M. (2019). NTIRE 2019 challenge on video deblurring and super-resolution: Dataset and study. In 2019 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE . https://​doi.​org/​10.​1109/​cvprw.​2019.​00251
Zurück zum Zitat Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. Advances in Neural Information Processing Systems, 33, 7462–7473. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. Advances in Neural Information Processing Systems, 33, 7462–7473.
Zurück zum Zitat Szeliski, R. (2021). Computer vision: Algorithms and applications (2nd ed.). London: Springer. Szeliski, R. (2021). Computer vision: Algorithms and applications (2nd ed.). London: Springer.
Zurück zum Zitat Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J., & Ng, R.(2020). Fourier features let networks learn high frequency functions in low dimensional domains. In Advances in neural information processing systems. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J., & Ng, R.(2020). Fourier features let networks learn high frequency functions in low dimensional domains. In Advances in neural information processing systems.
Zurück zum Zitat Tao, X., Gao, H., Shen, X., Wang, J., & Jia, J. (2018). Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8174–8182. Tao, X., Gao, H., Shen, X., Wang, J., & Jia, J. (2018). Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8174–8182.
Zurück zum Zitat Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., & Panozzo, D. (2019). Deep geometric prior for surface reconstruction. arXiv:1811.10943 Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., & Panozzo, D. (2019). Deep geometric prior for surface reconstruction. arXiv:​1811.​10943
Zurück zum Zitat Wipf, D., & Zhang, H. (2014). Revisiting bayesian blind deconvolution. Journal of Machine Learning Research, 15(111), 3775–3814.MathSciNet Wipf, D., & Zhang, H. (2014). Revisiting bayesian blind deconvolution. Journal of Machine Learning Research, 15(111), 3775–3814.MathSciNet
Zurück zum Zitat Yang, D., Zhuang, Z., Phillips, N.W., KaySong, Zdora, M.C., Harder, R., Cha, W., Liu, W., Barmherzig, D.A., Sun, J., & Hofmann, F. (2022). Application of single-instance deep generative priors for reconstruction of highly strained gold microcrystals in bragg coherent x-ray diffraction. In preparation 25 Yang, D., Zhuang, Z., Phillips, N.W., KaySong, Zdora, M.C., Harder, R., Cha, W., Liu, W., Barmherzig, D.A., Sun, J., & Hofmann, F. (2022). Application of single-instance deep generative priors for reconstruction of highly strained gold microcrystals in bragg coherent x-ray diffraction. In preparation 25
Zurück zum Zitat Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by realistic blurring. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2737–2746. Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by realistic blurring. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2737–2746.
Zurück zum Zitat Zhang, R., Isola, P., Efros, A.A., Shechtman, E., & Wang, O.(2018). The unreasonable effectiveness of deep features as a perceptual metric 16. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., & Wang, O.(2018). The unreasonable effectiveness of deep features as a perceptual metric 16.
Zurück zum Zitat Zhang, Y., Lau, Y., Kuo, H.W., Cheung, S., Pasupathy, A., & Wright, J. (2017). On the global geometry of sphere-constrained sparse blind deconvolution. In IEEE conference on computer vision and pattern recognition (CVPR). IEEE . https://doi.org/10.1109/cvpr.2017.466 Zhang, Y., Lau, Y., Kuo, H.W., Cheung, S., Pasupathy, A., & Wright, J. (2017). On the global geometry of sphere-constrained sparse blind deconvolution. In IEEE conference on computer vision and pattern recognition (CVPR). IEEE . https://​doi.​org/​10.​1109/​cvpr.​2017.​466
Zurück zum Zitat Zhuang, Z., Yang, D., Hofmann, F., Barmherzig, D., & Sun, J. (2022). Practical phase retrieval using double deep image priors. arXiv preprint arXiv:2211.00799 Zhuang, Z., Yang, D., Hofmann, F., Barmherzig, D., & Sun, J. (2022). Practical phase retrieval using double deep image priors. arXiv preprint arXiv:​2211.​00799
Metadaten
Titel
Blind Image Deblurring with Unknown Kernel Size and Substantial Noise
verfasst von
Zhong Zhuang
Taihui Li
Hengkang Wang
Ju Sun
Publikationsdatum
04.09.2023
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 2/2024
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01883-x

Weitere Artikel der Ausgabe 2/2024

International Journal of Computer Vision 2/2024 Zur Ausgabe

Premium Partner