Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Blood Pressure

verfasst von : Toshiyo Tamura

Erschienen in: Seamless Healthcare Monitoring

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Blood pressure is the most important physiological parameter. A cuff-based sphygmomanometer is commonly used but handling needs great care in terms of cuff size, position of cuff, and so on. A simple handling of wearable blood pressure monitor is desired. Currently, watch-type blood pressure monitor is under development. Whereas cuffless blood pressure monitor has been attempted. Either difference of two pulse wave transit time or R wave of ECG corresponding pulse wave is used to estimate in blood pressure based on biomechanical properties. In this chapter, currently available cuff-based sphygmomanometer is reviewed and then the development of cuffless blood pressure is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Whelton, P. K., Carey, R. M., Aronow, W. S. et al. (2017). ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults hypertension. HYP.0000000000000065, originally published November 13, 2017. https://doi.org/10.1161/HYP.0000000000000065 Whelton, P. K., Carey, R. M., Aronow, W. S. et al. (2017). ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults hypertension. HYP.0000000000000065, originally published November 13, 2017. https://​doi.​org/​10.​1161/​HYP.​0000000000000065​
2.
Zurück zum Zitat Magid, D. J., Olson, K. L., Billups, S. J., Wagner, N. M., Lyon, E. E., & Kroner, BA. (2013). A Pharmacist-Led, American Heart Association Heart360 Web-Enabled Home Blood Pressure Monitoring Program Circulation: Cardiovascular Quality and Outcomes, Circoutcomes, 112968172. Magid, D. J., Olson, K. L., Billups, S. J., Wagner, N. M., Lyon, E. E., & Kroner, BA. (2013). A Pharmacist-Led, American Heart Association Heart360 Web-Enabled Home Blood Pressure Monitoring Program Circulation: Cardiovascular Quality and Outcomes, Circoutcomes, 112968172.
3.
Zurück zum Zitat Williams, B., Lacy, P. S., Thom, S. M., Cruickshank, K., Stanton, A., Collier, D., Hughes, A. D., Thurston, H., & O’Rourke, M. (2006). Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation, 113, 1213–1225.CrossRef Williams, B., Lacy, P. S., Thom, S. M., Cruickshank, K., Stanton, A., Collier, D., Hughes, A. D., Thurston, H., & O’Rourke, M. (2006). Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation, 113, 1213–1225.CrossRef
4.
Zurück zum Zitat McEniery, C. M., Cockcroft, J. R., Roman, M. J., Franklin, S. S., & Wilkinson, I. B. (2014). Central blood pressure: Current evidence and clinical importance. European Heart Journal, 35(26), 1719–1725.CrossRef McEniery, C. M., Cockcroft, J. R., Roman, M. J., Franklin, S. S., & Wilkinson, I. B. (2014). Central blood pressure: Current evidence and clinical importance. European Heart Journal, 35(26), 1719–1725.CrossRef
6.
Zurück zum Zitat Campbell, N. R., Chockalingam, A., Fodor, J. G., & McKay, D. W. (1990). Accurate, reproducible measurement of blood pressure. CMAJ, 143, 19–24. Campbell, N. R., Chockalingam, A., Fodor, J. G., & McKay, D. W. (1990). Accurate, reproducible measurement of blood pressure. CMAJ, 143, 19–24.
7.
Zurück zum Zitat Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., Jones, D. W., Kurtz, T., Sheps, S. G., & Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals part 1: Blood pressure measurement in humans: A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Circulation, 111, 697–716.CrossRef Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., Jones, D. W., Kurtz, T., Sheps, S. G., & Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals part 1: Blood pressure measurement in humans: A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Circulation, 111, 697–716.CrossRef
8.
Zurück zum Zitat Borow, K. M., & Newburger, J. W. (1982). Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: Comparative study of indirect systolic, diastolic, and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurement. American Heart Journal, 103(5), 879–886.CrossRef Borow, K. M., & Newburger, J. W. (1982). Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: Comparative study of indirect systolic, diastolic, and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurement. American Heart Journal, 103(5), 879–886.CrossRef
10.
Zurück zum Zitat Ding, X.-R., Ni, N. Z., Yang, G.-Z., Pettigrew, R. I., Lo, B., Miao, F., Li, Y., Liu, J., & Zhang, Y.-T. (2016). Continuous blood pressure measurement from invasive to unobtrusive: Celebration of 200th birth anniversary of Carl Ludwig. IEEE Journal of Biomedical and Health Informatics, 20, 1455–1465.CrossRef Ding, X.-R., Ni, N. Z., Yang, G.-Z., Pettigrew, R. I., Lo, B., Miao, F., Li, Y., Liu, J., & Zhang, Y.-T. (2016). Continuous blood pressure measurement from invasive to unobtrusive: Celebration of 200th birth anniversary of Carl Ludwig. IEEE Journal of Biomedical and Health Informatics, 20, 1455–1465.CrossRef
11.
Zurück zum Zitat Penaz, J. (1973). Photoelectronic measurement of blood pressure, volume and flow in the finger. Digest of the 10th international conference on Medical and Biological Engineering, Dresden, Germany, p. 104. Penaz, J. (1973). Photoelectronic measurement of blood pressure, volume and flow in the finger. Digest of the 10th international conference on Medical and Biological Engineering, Dresden, Germany, p. 104.
12.
Zurück zum Zitat van Egmond, J., Hasenbos, M., & Crul, J. F. (1985). Invasive v. non-invasive measurement of arterial pressure. Comparison of two automatic methods and simultaneously measured direct intra-arterial pressure. British Journal of Anaesthesia, 57, 434–444.CrossRef van Egmond, J., Hasenbos, M., & Crul, J. F. (1985). Invasive v. non-invasive measurement of arterial pressure. Comparison of two automatic methods and simultaneously measured direct intra-arterial pressure. British Journal of Anaesthesia, 57, 434–444.CrossRef
13.
Zurück zum Zitat Parati, G., Casadei, R., Groppelli, A., Di Rienzo, M., & Mancia, G. (1989). Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension, 13(6 Pt 1), 647–655.CrossRef Parati, G., Casadei, R., Groppelli, A., Di Rienzo, M., & Mancia, G. (1989). Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension, 13(6 Pt 1), 647–655.CrossRef
14.
Zurück zum Zitat Drzewiecki, G. M., Melbin, J., & Noordergraaf, A. (1983). Arterial tonometry: Review and analysis. Journal of Biomechanics, 16, 141–152.CrossRef Drzewiecki, G. M., Melbin, J., & Noordergraaf, A. (1983). Arterial tonometry: Review and analysis. Journal of Biomechanics, 16, 141–152.CrossRef
15.
Zurück zum Zitat Smulyan, H., Siddiqui, D. S., Carlson, R. J., London, G. M., & Safar, M. E. (2003). Clinical utility of aortic pulses and pressures calculated from applanated radialartery pulses. Hypertension, 42, 150–155.CrossRef Smulyan, H., Siddiqui, D. S., Carlson, R. J., London, G. M., & Safar, M. E. (2003). Clinical utility of aortic pulses and pressures calculated from applanated radialartery pulses. Hypertension, 42, 150–155.CrossRef
16.
Zurück zum Zitat Miyashita, H. (2012). Clinical assessment of Central Blood Pressure. Current Hypertension Reviews, 8(2), 80–90.CrossRef Miyashita, H. (2012). Clinical assessment of Central Blood Pressure. Current Hypertension Reviews, 8(2), 80–90.CrossRef
17.
Zurück zum Zitat Garcia-Ortiz, L., Recio-Rodríguez, J. I., Canales-Reina, J. J., Cabrejas-Sánchez, A., Gomez-Arranz, A., Magdalena-Belio, J. F., Guenaga-Saenz, N., Agudo-Conde, C., & Gomez-Marcos, M. A. (2012). on behalf of the EVIDENT Group: Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertension Research, 35, 617–623.CrossRef Garcia-Ortiz, L., Recio-Rodríguez, J. I., Canales-Reina, J. J., Cabrejas-Sánchez, A., Gomez-Arranz, A., Magdalena-Belio, J. F., Guenaga-Saenz, N., Agudo-Conde, C., & Gomez-Marcos, M. A. (2012). on behalf of the EVIDENT Group: Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertension Research, 35, 617–623.CrossRef
18.
Zurück zum Zitat Ott, C., Haetinger, S., Schneider, M. P., Pauschinger, M., & Schmieder, R. E. (2012). Comparison of two noninvasive devices for measurement of central systolic blood pressure with invasive measurement during cardiac catheterization. Journal of Clinical Hypertension (Greenwich, Conn.), 14, 575–579.CrossRef Ott, C., Haetinger, S., Schneider, M. P., Pauschinger, M., & Schmieder, R. E. (2012). Comparison of two noninvasive devices for measurement of central systolic blood pressure with invasive measurement during cardiac catheterization. Journal of Clinical Hypertension (Greenwich, Conn.), 14, 575–579.CrossRef
19.
Zurück zum Zitat Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L., Avolio, A. P., Chirinos, J. A., Cockcroft, J. R., Heffernan, K. S., Lakatta, E. G., McEniery, C. M., Mitchell, G. F., Najjar, S. S., Nichols, W. W., Urbina, E. M., & Weber, T. (2015). Recommendations for improving and standardizing vascular research on arterial stiffness. A scientific statement from the American Heart Association. Hypertension, 66, 698–722.CrossRef Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L., Avolio, A. P., Chirinos, J. A., Cockcroft, J. R., Heffernan, K. S., Lakatta, E. G., McEniery, C. M., Mitchell, G. F., Najjar, S. S., Nichols, W. W., Urbina, E. M., & Weber, T. (2015). Recommendations for improving and standardizing vascular research on arterial stiffness. A scientific statement from the American Heart Association. Hypertension, 66, 698–722.CrossRef
20.
Zurück zum Zitat Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A. M., Target, R., & Levy, B. I. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement validation and clinical application studies. Hypertension, 26(3), 485–490.CrossRef Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A. M., Target, R., & Levy, B. I. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement validation and clinical application studies. Hypertension, 26(3), 485–490.CrossRef
21.
Zurück zum Zitat Chen, W., Kobayashi, T., Ichikawa, S., Takeuchi, Y., & Togawa, T. (2000). Continuous estimation of systolic BP using the pulse arrival time and intermittent calibration. Medical and Biological Engineering Computing, 38(5), 569–574.CrossRef Chen, W., Kobayashi, T., Ichikawa, S., Takeuchi, Y., & Togawa, T. (2000). Continuous estimation of systolic BP using the pulse arrival time and intermittent calibration. Medical and Biological Engineering Computing, 38(5), 569–574.CrossRef
22.
Zurück zum Zitat Poon, C. C. Y., & Zhang, Y. T. (2005). Cuff-less and noninvasive measurements of arterial BP by pulse transit time. Proceedings of the 27th international conference on IEEE-Engineering in Medicine and Biology Society Aug (EMBC 2005), pp. 5877–5880. Poon, C. C. Y., & Zhang, Y. T. (2005). Cuff-less and noninvasive measurements of arterial BP by pulse transit time. Proceedings of the 27th international conference on IEEE-Engineering in Medicine and Biology Society Aug (EMBC 2005), pp. 5877–5880.
23.
Zurück zum Zitat IEEE standard for Wearable, Cuffless Blood Pressure Measuring Devices: IEEE std 1708, 2014. IEEE standard for Wearable, Cuffless Blood Pressure Measuring Devices: IEEE std 1708, 2014.
24.
Zurück zum Zitat Zhang, G., Gao, M., Xu, D., Olivier, N. B., & Mukkamala, R. (2011). Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure. Journal of Applied Physiology (1985), 111(6), 1681–1686.CrossRef Zhang, G., Gao, M., Xu, D., Olivier, N. B., & Mukkamala, R. (2011). Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure. Journal of Applied Physiology (1985), 111(6), 1681–1686.CrossRef
25.
Zurück zum Zitat Sola, J., Proenc, M., Ferrario, D., Porchet, J.-A., Falhi, A., Grossenbacher, O., Allemann, Y., Rimoldi, S. F., & Sartori, C. (2013). Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Transactions on Biomedical Engineering, 60(12), 3505–3513.CrossRef Sola, J., Proenc, M., Ferrario, D., Porchet, J.-A., Falhi, A., Grossenbacher, O., Allemann, Y., Rimoldi, S. F., & Sartori, C. (2013). Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Transactions on Biomedical Engineering, 60(12), 3505–3513.CrossRef
26.
Zurück zum Zitat Wong, M. Y., Pickwell-MacPherson, E., Zhang, Y. T., & Cheng, J. C. (2011). The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. European Journal Applied Physiology, 111(1), 135–144.CrossRef Wong, M. Y., Pickwell-MacPherson, E., Zhang, Y. T., & Cheng, J. C. (2011). The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. European Journal Applied Physiology, 111(1), 135–144.CrossRef
27.
Zurück zum Zitat Wibmer, T., Doering, K., Kropf-Sanchen, C., Rüdiger, S., Blanta, I., Stoiber, K. M., Rottbauer, W., & Schumann, C. (2014). Pulse transit time and blood pressure during cardiopulmonary exercise tests. Physiological Research, 63, 287–296. Wibmer, T., Doering, K., Kropf-Sanchen, C., Rüdiger, S., Blanta, I., Stoiber, K. M., Rottbauer, W., & Schumann, C. (2014). Pulse transit time and blood pressure during cardiopulmonary exercise tests. Physiological Research, 63, 287–296.
28.
Zurück zum Zitat Gao, M., Olivier, N. B., & Mukkamala, R. (2016). Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Physiological Reports, 4(10), e12768.CrossRef Gao, M., Olivier, N. B., & Mukkamala, R. (2016). Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Physiological Reports, 4(10), e12768.CrossRef
29.
Zurück zum Zitat Zhang, G., Cottrell, A. C., Henry, I. C, & McCombie, D. B. (2016). Assessment of pre-ejection period in ambulatory subjects using seismocardiogram in a wearable blood pressure monitor. 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3386–3389. Zhang, G., Cottrell, A. C., Henry, I. C, & McCombie, D. B. (2016). Assessment of pre-ejection period in ambulatory subjects using seismocardiogram in a wearable blood pressure monitor. 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3386–3389.
30.
Zurück zum Zitat Martin, S. L., Carek, A. M., Kim, C. S., Ashouri, H., Inan, O. T., Hahn, J. O., & Mukkamala, R. (2016). Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Scientific Reports, 6, 39273. https://doi.org/10.1038/srep39273.CrossRef Martin, S. L., Carek, A. M., Kim, C. S., Ashouri, H., Inan, O. T., Hahn, J. O., & Mukkamala, R. (2016). Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Scientific Reports, 6, 39273. https://​doi.​org/​10.​1038/​srep39273.CrossRef
31.
Zurück zum Zitat ANSI/AAMI/ISO. ANSI/AAMI/ISO 81060–2:20132: Non-invasive sphygmonanometers–Part 2: Clinical investigation of automated measurement type. American National Standard 1 A.D. ANSI/AAMI/ISO. ANSI/AAMI/ISO 81060–2:20132: Non-invasive sphygmonanometers–Part 2: Clinical investigation of automated measurement type. American National Standard 1 A.D.
32.
Zurück zum Zitat Friedman, B. A., Alpert, B. S., Osborn, D., et al. (2008). Assessment of the validation of blood pressure monitors: A statistical reappraisal. Blood Pressure Monitoring, 13, 187–191.CrossRef Friedman, B. A., Alpert, B. S., Osborn, D., et al. (2008). Assessment of the validation of blood pressure monitors: A statistical reappraisal. Blood Pressure Monitoring, 13, 187–191.CrossRef
33.
Zurück zum Zitat Stergiou, G. S., Karpettas, N., Atkins, N., & O’Brien, E. (2010). European society of hypertension international protocol for the validation of blood pressure monitors: A critical review of its application and rationale for revision. Blood Pressure Monitoring, 15(1), 39–48.CrossRef Stergiou, G. S., Karpettas, N., Atkins, N., & O’Brien, E. (2010). European society of hypertension international protocol for the validation of blood pressure monitors: A critical review of its application and rationale for revision. Blood Pressure Monitoring, 15(1), 39–48.CrossRef
34.
Zurück zum Zitat Stergiou, G. S., Parati, G., Asmar, R., et al. (2012). European society of hypertension working group on blood pressure monitoring. Requirements for professional office blood pressure monitors. Journal of Hypertension, 30, 537–542.CrossRef Stergiou, G. S., Parati, G., Asmar, R., et al. (2012). European society of hypertension working group on blood pressure monitoring. Requirements for professional office blood pressure monitors. Journal of Hypertension, 30, 537–542.CrossRef
35.
Zurück zum Zitat Beime, B., Deutsch, C., Gomez, T., Zwingers, T., Mengden, T., & Bramlage, P. (2016). Validation protocols for blood pressure-measuring devices: Status quo and development needs. Blood Pressure Monitoring, 21(1), 1–8.CrossRef Beime, B., Deutsch, C., Gomez, T., Zwingers, T., Mengden, T., & Bramlage, P. (2016). Validation protocols for blood pressure-measuring devices: Status quo and development needs. Blood Pressure Monitoring, 21(1), 1–8.CrossRef
39.
Zurück zum Zitat Khoshdel, A. R., Carney, S., & Gillies, A. (2010). The impact of arm position and pulse pressure on the validation of a wrist-cuff blood pressure measurement device in a high risk population. International Journal of General Medicine, 3, 119–125.CrossRef Khoshdel, A. R., Carney, S., & Gillies, A. (2010). The impact of arm position and pulse pressure on the validation of a wrist-cuff blood pressure measurement device in a high risk population. International Journal of General Medicine, 3, 119–125.CrossRef
40.
Zurück zum Zitat Bloch, M. J., & Basile, J. N. (2011). New British guidelines mandate ambulatory blood pressure monitoring to diagnose hypertension in all patients: Not ready for prime time in the United States. The Journal of Clinical Hypertension, 13(11), 785–786.CrossRef Bloch, M. J., & Basile, J. N. (2011). New British guidelines mandate ambulatory blood pressure monitoring to diagnose hypertension in all patients: Not ready for prime time in the United States. The Journal of Clinical Hypertension, 13(11), 785–786.CrossRef
42.
Zurück zum Zitat O’Brien, E. (2013). On behalf of the European Society of Hypertension Working Group on Blood Pressure Monitoring European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. Journal of Hypertension, 31, 1731–1768.CrossRef O’Brien, E. (2013). On behalf of the European Society of Hypertension Working Group on Blood Pressure Monitoring European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. Journal of Hypertension, 31, 1731–1768.CrossRef
43.
Zurück zum Zitat Parati, G., Stergiou, G., O'Brien, E., Asmar, R., Beilin, L., Bilo, G., Clement, D., de la Sierra, A., de Leeuw, P., Dolan, E., Fagard, R., Graves, J., Head, G. A., Imai, Y., Kario, K., Lurbe, E., Mallion, J. M., Mancia, G., Mengden, T., Myers, M., Ogedegbe, G., Ohkubo, T., Omboni, S., Palatini, P., Redon, J., Ruilope, L. M., Shennan, A., Staessen, J. A., vanMontfrans, G., Verdecchia, P., Waeber, B., Wang, J., Zanchetti, A., & Zhang, Y. (2014). European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. Journal of Hypertension, 32(7), 1359–1366.CrossRef Parati, G., Stergiou, G., O'Brien, E., Asmar, R., Beilin, L., Bilo, G., Clement, D., de la Sierra, A., de Leeuw, P., Dolan, E., Fagard, R., Graves, J., Head, G. A., Imai, Y., Kario, K., Lurbe, E., Mallion, J. M., Mancia, G., Mengden, T., Myers, M., Ogedegbe, G., Ohkubo, T., Omboni, S., Palatini, P., Redon, J., Ruilope, L. M., Shennan, A., Staessen, J. A., vanMontfrans, G., Verdecchia, P., Waeber, B., Wang, J., Zanchetti, A., & Zhang, Y. (2014). European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. Journal of Hypertension, 32(7), 1359–1366.CrossRef
44.
Zurück zum Zitat Palatini, P., Frigo, G., Bertolo, O., Roman, E., Da Corta, R., & Winnicki, M. (1998). Validation of the 2012 device for ambulatory blood pressure monitoring and evaluation of performance according to subjects’ characteristics. Blood Pressure Monitoring, 3, 255–260. Palatini, P., Frigo, G., Bertolo, O., Roman, E., Da Corta, R., & Winnicki, M. (1998). Validation of the 2012 device for ambulatory blood pressure monitoring and evaluation of performance according to subjects’ characteristics. Blood Pressure Monitoring, 3, 255–260.
45.
Zurück zum Zitat Jones, S. C., Bilous, M., Winship, S., Finn, P., & Goodwin, J. (2004). Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Pressure Monitoring, 9, 219–223.CrossRef Jones, S. C., Bilous, M., Winship, S., Finn, P., & Goodwin, J. (2004). Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Pressure Monitoring, 9, 219–223.CrossRef
46.
Zurück zum Zitat Yip, G. W., So, H. K., Li, A. M., Tomlinson, B., Wong, S. N., & Sung, R. Y. (2012). Validation of A&D TM-2430 upper-arm blood pressure monitor for ambulatory blood pressure monitoring in children and adolescents, according to the British Hypertension Society protocol. Blood Pressure Monitoring, 17(2), 76–79.CrossRef Yip, G. W., So, H. K., Li, A. M., Tomlinson, B., Wong, S. N., & Sung, R. Y. (2012). Validation of A&D TM-2430 upper-arm blood pressure monitor for ambulatory blood pressure monitoring in children and adolescents, according to the British Hypertension Society protocol. Blood Pressure Monitoring, 17(2), 76–79.CrossRef
47.
Zurück zum Zitat Nair, D., Tan, S.-Y., Gan, H.-W., Lim, S.-F., Tan, J., Zhu, M., Gao, H., Chua, N.-H., Peh, W.-L., & Mak, K.-H. (2008). The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: The validation of a novel wrist-bound device in adults. Journal of Human Hypertension, 22, 220–222. Nair, D., Tan, S.-Y., Gan, H.-W., Lim, S.-F., Tan, J., Zhu, M., Gao, H., Chua, N.-H., Peh, W.-L., & Mak, K.-H. (2008). The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: The validation of a novel wrist-bound device in adults. Journal of Human Hypertension, 22, 220–222.
48.
Zurück zum Zitat Wong, M. Y. M., Poon, C. C. Y., & Zhang, Y.-T. (2009). An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: A half year study on normotensive subjects. Cardiovascular Engineering (Dordrecht, Netherlands)., 9, 32–38. Wong, M. Y. M., Poon, C. C. Y., & Zhang, Y.-T. (2009). An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: A half year study on normotensive subjects. Cardiovascular Engineering (Dordrecht, Netherlands)., 9, 32–38.
49.
Zurück zum Zitat Masè, M., Walter Mattei, W., Cucino, R., Faes, L., & Nollo, G. (2011). Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. Journal of Electrocardiology, 44, 201–207.CrossRef Masè, M., Walter Mattei, W., Cucino, R., Faes, L., & Nollo, G. (2011). Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. Journal of Electrocardiology, 44, 201–207.CrossRef
50.
Zurück zum Zitat Gesche, H., Grosskurth, D., Küchler, G., & Patzak, A. (2012). Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method. European Journal of Applied Physiology, 112, 309–315.CrossRef Gesche, H., Grosskurth, D., Küchler, G., & Patzak, A. (2012). Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method. European Journal of Applied Physiology, 112, 309–315.CrossRef
51.
Zurück zum Zitat Younessi Heravi, M. A., Khalilzadeh, M. A., & Joharinia, S. (2014). Continuous and cuffless blood pressure monitoring based on ECG and SpO2 signals by using Microsoft Visual C Sharp. Journal of Biomedical Physics & Engineering, 4(1), 27–32. Younessi Heravi, M. A., Khalilzadeh, M. A., & Joharinia, S. (2014). Continuous and cuffless blood pressure monitoring based on ECG and SpO2 signals by using Microsoft Visual C Sharp. Journal of Biomedical Physics & Engineering, 4(1), 27–32.
52.
Zurück zum Zitat Ding, X.-R., Zhang, Y.-T., Liu, J., Dai, W.-X., & Tsang, H. K. (2016). Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Transactions on Biomedical Engineering BME, 63(5), 964–972.CrossRef Ding, X.-R., Zhang, Y.-T., Liu, J., Dai, W.-X., & Tsang, H. K. (2016). Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Transactions on Biomedical Engineering BME, 63(5), 964–972.CrossRef
53.
Zurück zum Zitat Hennigand, A., & Patzak, A. (2013). Continuous blood pressure measurement using pulse transit time. Somnologie, 17, 104–110.CrossRef Hennigand, A., & Patzak, A. (2013). Continuous blood pressure measurement using pulse transit time. Somnologie, 17, 104–110.CrossRef
54.
Zurück zum Zitat Kim, J. S., Kim, K. K., Baek, H. J., & Park, K. S. (2008). Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiological Measurement, 29, 615–624.CrossRef Kim, J. S., Kim, K. K., Baek, H. J., & Park, K. S. (2008). Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiological Measurement, 29, 615–624.CrossRef
55.
Zurück zum Zitat Chen, Y., Wen, C., Tao, G., Bi, M., Li, G., et al. (2009). Continuous and noninvasive blood pressure measurement: A novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Annals of Biomedical Engineering, 37(11), 2222–2233.CrossRef Chen, Y., Wen, C., Tao, G., Bi, M., Li, G., et al. (2009). Continuous and noninvasive blood pressure measurement: A novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Annals of Biomedical Engineering, 37(11), 2222–2233.CrossRef
56.
Zurück zum Zitat Forouzanfar, M., Ahmad, S., Batkin, I., Dajani, H. R., Groza, V. Z., & Bolic, M. (2013). Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence. IEEE Transactions on Biomedical Engineering BME, 60(7), 1814–1824.CrossRef Forouzanfar, M., Ahmad, S., Batkin, I., Dajani, H. R., Groza, V. Z., & Bolic, M. (2013). Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence. IEEE Transactions on Biomedical Engineering BME, 60(7), 1814–1824.CrossRef
57.
Zurück zum Zitat McCarthy, B. M., Vaughan, C. J., O'Flynn, B., Mathewson, A., & Mathúna, C. O. (2013). An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms. Journal of Human Hypertension, 27, 744–750.CrossRef McCarthy, B. M., Vaughan, C. J., O'Flynn, B., Mathewson, A., & Mathúna, C. O. (2013). An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms. Journal of Human Hypertension, 27, 744–750.CrossRef
58.
Zurück zum Zitat Thomas, S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., & Jafari, R. (2016). BioWatch: A noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE Journal of Biomedical and Health Informatics, 20(5), 1291–1300.CrossRef Thomas, S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., & Jafari, R. (2016). BioWatch: A noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE Journal of Biomedical and Health Informatics, 20(5), 1291–1300.CrossRef
59.
Zurück zum Zitat Chandrasekaran, V., Dantu, R., Jonnada, S., Thiyagaraja, S., & Pathapati Subbu, K. (2013). Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 60(4), 1080–1089.CrossRef Chandrasekaran, V., Dantu, R., Jonnada, S., Thiyagaraja, S., & Pathapati Subbu, K. (2013). Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 60(4), 1080–1089.CrossRef
60.
Zurück zum Zitat Schoot, T. S., Weenk, M., van de Belt, T. H., JLPG, E. L., van Goor, H., & JH, B. S. (2016). A new cuffless device for measuring blood pressure: A reallife validation study. Journal of Medical Internet Research, 18(5), e85.CrossRef Schoot, T. S., Weenk, M., van de Belt, T. H., JLPG, E. L., van Goor, H., & JH, B. S. (2016). A new cuffless device for measuring blood pressure: A real­life validation study. Journal of Medical Internet Research, 18(5), e85.CrossRef
61.
Zurück zum Zitat Futatsuyama, K., Mitsumoto, N., Kawachi, T., & Nakagawa, T. (2011). Noise robust optical sensor for driver’s vital signs, SAE Technical Paper, 2011-01-1024. Futatsuyama, K., Mitsumoto, N., Kawachi, T., & Nakagawa, T. (2011). Noise robust optical sensor for driver’s vital signs, SAE Technical Paper, 2011-01-1024.
62.
Zurück zum Zitat Tang, Z., Tamura, T., Sekine, M., Huang, A., Chen, W., Yoshid, M., Sakatani, K., Kobayashi, H., & Kanaya, S. A. (2016). Chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE Journal of Biomedical Health Informatics. https://doi.org/10.1109/JBHI.2016.2614962. Tang, Z., Tamura, T., Sekine, M., Huang, A., Chen, W., Yoshid, M., Sakatani, K., Kobayashi, H., & Kanaya, S. A. (2016). Chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE Journal of Biomedical Health Informatics. https://​doi.​org/​10.​1109/​JBHI.​2016.​2614962.
63.
Zurück zum Zitat Liu, Q., Yan, B. P., Yu, C.-M., Zhang, Y.-T., & Poon, C. C. Y. (2014). Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients. IEEE Transactions on Biomedical Engineering, 61(2), 346–352.CrossRef Liu, Q., Yan, B. P., Yu, C.-M., Zhang, Y.-T., & Poon, C. C. Y. (2014). Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients. IEEE Transactions on Biomedical Engineering, 61(2), 346–352.CrossRef
64.
Zurück zum Zitat Zheng, Y., Poon, C. C. Y., Yan, B. P., & Lau, J. Y. W. (2016). Pulse arrival time based cuff-less and 24-H wearable blood pressure monitoring and its diagnostic value in hypertension. Journal of Medical System, 40, 195.CrossRef Zheng, Y., Poon, C. C. Y., Yan, B. P., & Lau, J. Y. W. (2016). Pulse arrival time based cuff-less and 24-H wearable blood pressure monitoring and its diagnostic value in hypertension. Journal of Medical System, 40, 195.CrossRef
65.
Zurück zum Zitat Mukkamala, R., Hahn, J. O., Inan, O. T., Mestha, L. K., Kim, C. S., Töreyin, H., & Kyal, S. (2015). Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practice. IEEE Transactions on Biomedical Engineering, 62(8), 1879–1901.CrossRef Mukkamala, R., Hahn, J. O., Inan, O. T., Mestha, L. K., Kim, C. S., Töreyin, H., & Kyal, S. (2015). Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practice. IEEE Transactions on Biomedical Engineering, 62(8), 1879–1901.CrossRef
66.
Zurück zum Zitat Nabeel, P. M., Joseph, J., Awasthi, V., & Sivaprakasam, M. (2016). Single source photoplethysmograph transducer for local pulse wave velocity measurement. Proceedings of the IEEE 38th annual international conference on Engineering in Medicine and Biology Society (EMBC) 2016, pp. 4256–4259. Nabeel, P. M., Joseph, J., Awasthi, V., & Sivaprakasam, M. (2016). Single source photoplethysmograph transducer for local pulse wave velocity measurement. Proceedings of the IEEE 38th annual international conference on Engineering in Medicine and Biology Society (EMBC) 2016, pp. 4256–4259.
67.
Zurück zum Zitat Hsu, Y.-P., & Young, D. J. (2014). Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sensors Journal, 14(10), 3490–3497.CrossRef Hsu, Y.-P., & Young, D. J. (2014). Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sensors Journal, 14(10), 3490–3497.CrossRef
68.
Zurück zum Zitat Wu, Chih. -C., & Chao, P. C.-P. (2016). Validation of the Freescan pulse transit time-based blood pressure monitor Journal of Hypertension, Poster Session 05–04. Wu, Chih. -C., & Chao, P. C.-P. (2016). Validation of the Freescan pulse transit time-based blood pressure monitor Journal of Hypertension, Poster Session 05–04.
70.
Zurück zum Zitat Verberk, W. J., Cheng, H. M., Huang, L. C., Lin, C. M., Teng, Y. P., & Chen, C. H. (2016). Practical suitability of a stand-alone oscillometric Central Blood Pressure Monitor: A review of the Microlife WatchBP Office Central. Pulse (Basel), 3(3–4), 205–221.CrossRef Verberk, W. J., Cheng, H. M., Huang, L. C., Lin, C. M., Teng, Y. P., & Chen, C. H. (2016). Practical suitability of a stand-alone oscillometric Central Blood Pressure Monitor: A review of the Microlife WatchBP Office Central. Pulse (Basel), 3(3–4), 205–221.CrossRef
Metadaten
Titel
Blood Pressure
verfasst von
Toshiyo Tamura
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69362-0_4

Neuer Inhalt