Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 12/2020

28.09.2020 | Original Article

Bone age assessment based on deep convolution neural network incorporated with segmentation

verfasst von: Yunyuan Gao, Tao Zhu, Xiaohua Xu

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Bone age assessment is not only an important means of assessing maturity of adolescents, but also plays an indispensable role in the fields of orthodontics, kinematics, pediatrics, forensic science, etc. Most studies, however, do not take into account the impact of background noise on the results of the assessment. In order to obtain accurate bone age, this paper presents an automatic assessment method, for bone age based on deep convolutional neural networks.

Method

Our method was divided into two phases. In the image segmentation stage, the segmentation network U-Net was used to acquire the mask image which was then compared with the original image to obtain the hand bone portion after removing the background interference. For the classification phase, in order to further improve the evaluation performance, an attention mechanism was added on the basis of Visual Geometry Group Network (VGGNet). Attention mechanisms can help the model invest more resources in important areas of the hand bone.

Result

The assessment model was tested on the RSNA2017 Pediatric Bone Age dataset. The results show that our adjusted model outperforms the VGGNet. The mean absolute error can reach 9.997 months, which outperforms other common methods for bone age assessment.

Conclusion

We explored the establishment of an automated bone age assessment method based on deep learning. This method can efficiently eliminate the influence of background interference on bone age evaluation, improve the accuracy of bone age evaluation, provide important reference value for bone age determination, and can aid in the prevention of adolescent growth and development diseases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaiyu X (2007) On the development of bone age research. J Beijing Sport Univ 2007(07):944–945, 958 Kaiyu X (2007) On the development of bone age research. J Beijing Sport Univ 2007(07):944–945, 958
2.
Zurück zum Zitat Martin DD, Wit JM, Hochberg Z, Savendahl L, Van Rijn RR, Fricke O, Cameron N, Caliebe J, Hertel T, Kiepe D, Albertssonwikland K, Thodberg HH, Binder G, Ranke MB (2011) The use of bone age in clinical practice—part 1. Hormone Res Paediatr 76(1):1–9CrossRef Martin DD, Wit JM, Hochberg Z, Savendahl L, Van Rijn RR, Fricke O, Cameron N, Caliebe J, Hertel T, Kiepe D, Albertssonwikland K, Thodberg HH, Binder G, Ranke MB (2011) The use of bone age in clinical practice—part 1. Hormone Res Paediatr 76(1):1–9CrossRef
3.
Zurück zum Zitat Cheung KM, Cheung JP, Samartzis D, Mak KC, Wong YW, Cheung WY, Akbarnia BA, Luk KD (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379(9830):1967–1974CrossRef Cheung KM, Cheung JP, Samartzis D, Mak KC, Wong YW, Cheung WY, Akbarnia BA, Luk KD (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379(9830):1967–1974CrossRef
4.
Zurück zum Zitat Dominkus M, Krepler P, Schwameis E, Windhager R, Kotz R (2001) Growth prediction in extendable tumor prostheses in children. Clin Orthop Relat Res 390(390):212–220CrossRef Dominkus M, Krepler P, Schwameis E, Windhager R, Kotz R (2001) Growth prediction in extendable tumor prostheses in children. Clin Orthop Relat Res 390(390):212–220CrossRef
5.
Zurück zum Zitat Duthie RB (1959) The significance of growth in orthopaedic surgery. Clin Orthop Relat Res 14:7–19 Duthie RB (1959) The significance of growth in orthopaedic surgery. Clin Orthop Relat Res 14:7–19
6.
Zurück zum Zitat Thompson GH, Akbarnia BA, Campbell RM (2007) Growing rod techniques in early-onset scoliosis. J Pediatr Orthop 27(3):354–361CrossRef Thompson GH, Akbarnia BA, Campbell RM (2007) Growing rod techniques in early-onset scoliosis. J Pediatr Orthop 27(3):354–361CrossRef
7.
Zurück zum Zitat Garn SM (1959) Radiographic atlas of skeletal development of the hand and wrist. Am J Hum Genet 11(3):282–283PubMedCentral Garn SM (1959) Radiographic atlas of skeletal development of the hand and wrist. Am J Hum Genet 11(3):282–283PubMedCentral
8.
Zurück zum Zitat Kim SY, Oh YJ, Shin JY, Rhie YJ, Lee KH (2008) Comparison of the Greulich–Pyle and Tanner Whitehouse (TW3) methods in bone age assessment. J Korean Soc Pediatr Endocrinol 13(1):50–55 Kim SY, Oh YJ, Shin JY, Rhie YJ, Lee KH (2008) Comparison of the Greulich–Pyle and Tanner Whitehouse (TW3) methods in bone age assessment. J Korean Soc Pediatr Endocrinol 13(1):50–55
10.
Zurück zum Zitat Michael DJ, Nelson AC (1989) HANDX: a model-based system for automatic segmentation of bones from digital hand radiographs. IEEE Trans Med Imaging 8(1):64CrossRef Michael DJ, Nelson AC (1989) HANDX: a model-based system for automatic segmentation of bones from digital hand radiographs. IEEE Trans Med Imaging 8(1):64CrossRef
11.
Zurück zum Zitat Frisch H, Riedl S, Waldhor T (1996) Computer aided estimation of skeletal age and comparison with bone age evaluations by the method of Greulich-Pyle and Tanner-Whitehouse. Pediatr Radiol 26(3):226–231CrossRef Frisch H, Riedl S, Waldhor T (1996) Computer aided estimation of skeletal age and comparison with bone age evaluations by the method of Greulich-Pyle and Tanner-Whitehouse. Pediatr Radiol 26(3):226–231CrossRef
12.
Zurück zum Zitat Pietka E, Gertych A, Pospiech S, Cao F, Huang HK, Gilsanz V (2001) Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans Med Imaging 20(8):715–729CrossRef Pietka E, Gertych A, Pospiech S, Cao F, Huang HK, Gilsanz V (2001) Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans Med Imaging 20(8):715–729CrossRef
13.
Zurück zum Zitat Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee RE (1997) Automated vision system for skeletal age assessment using knowledge based techniques. In: International conference on image processing Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee RE (1997) Automated vision system for skeletal age assessment using knowledge based techniques. In: International conference on image processing
14.
Zurück zum Zitat Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee RE (2000) Skeletal growth estimation using radiographic image processing and analysis. In: International conference of the IEEE engineering in medicine and biology society, vol 4, no 4, pp 292–297 Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee RE (2000) Skeletal growth estimation using radiographic image processing and analysis. In: International conference of the IEEE engineering in medicine and biology society, vol 4, no 4, pp 292–297
15.
Zurück zum Zitat Bocchi L, Ferrara F, Nicoletti I, Valli G (2003) An artificial neural network architecture for skeletal age assessment. In: International conference on image processing Bocchi L, Ferrara F, Nicoletti I, Valli G (2003) An artificial neural network architecture for skeletal age assessment. In: International conference on image processing
16.
Zurück zum Zitat Liang B, Zhai Y, Tong C, Zhao J, Li J, He X, Ma Q (2019) A deep automated skeletal bone age assessment model via region-based convolutional neural network. Future Gener Comput Syst 98:54–59CrossRef Liang B, Zhai Y, Tong C, Zhao J, Li J, He X, Ma Q (2019) A deep automated skeletal bone age assessment model via region-based convolutional neural network. Future Gener Comput Syst 98:54–59CrossRef
17.
Zurück zum Zitat Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AAS, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8:292CrossRef Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AAS, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8:292CrossRef
18.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Neural information processing systems Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Neural information processing systems
19.
Zurück zum Zitat Deng J, Dong W, Socher R, Li L, Li K, Feifei L (2009) ImageNet: a large-scale hierarchical image database. In: Computer vision and pattern recognition Deng J, Dong W, Socher R, Li L, Li K, Feifei L (2009) ImageNet: a large-scale hierarchical image database. In: Computer vision and pattern recognition
20.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations
21.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Computer vision and pattern recognition Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Computer vision and pattern recognition
22.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Computer vision and pattern recognition He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Computer vision and pattern recognition
23.
Zurück zum Zitat Payan A, Montana G (2015) Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv Computer vision and pattern recognition Payan A, Montana G (2015) Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv Computer vision and pattern recognition
24.
Zurück zum Zitat Gao X, Lin S, Wong TY (2015) Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng 62(11):2693–2701CrossRef Gao X, Lin S, Wong TY (2015) Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng 62(11):2693–2701CrossRef
25.
Zurück zum Zitat Christ PF, Ettlinger F, Kaissis G, Schlecht S, Grün F, Valentinitsch A, Ahmadi S-A, Braren R, Menze B (2017) SurvivalNet: predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks. In: International symposium on biomedical imaging Christ PF, Ettlinger F, Kaissis G, Schlecht S, Grün F, Valentinitsch A, Ahmadi S-A, Braren R, Menze B (2017) SurvivalNet: predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks. In: International symposium on biomedical imaging
26.
Zurück zum Zitat Zheng H, Chen J, Yao X, Sangaiah AK, Jiang Y, Zhao C (2018) Clickbait convolutional neural network. Symmetry 10(5):138CrossRef Zheng H, Chen J, Yao X, Sangaiah AK, Jiang Y, Zhao C (2018) Clickbait convolutional neural network. Symmetry 10(5):138CrossRef
27.
Zurück zum Zitat Sajjad M, Khan S, Hussain T, Muhammad K, Sangaiah AK, Castiglione A, Esposito C, Baik SW (2019) CNN-based anti-spoofing two-tier multi-factor authentication system. Pattern Recognit Lett 126:123–131CrossRef Sajjad M, Khan S, Hussain T, Muhammad K, Sangaiah AK, Castiglione A, Esposito C, Baik SW (2019) CNN-based anti-spoofing two-tier multi-factor authentication system. Pattern Recognit Lett 126:123–131CrossRef
28.
Zurück zum Zitat Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1):313CrossRef Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1):313CrossRef
29.
Zurück zum Zitat Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30(4):427–441CrossRef Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30(4):427–441CrossRef
30.
Zurück zum Zitat Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51CrossRef Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51CrossRef
31.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer assisted intervention Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer assisted intervention
33.
Zurück zum Zitat Simu S, Lal S (2017) A study about evolutionary and non-evolutionary segmentation techniques on hand radiographs for bone age assessment. Biomed Signal Process Control 33:220–235CrossRef Simu S, Lal S (2017) A study about evolutionary and non-evolutionary segmentation techniques on hand radiographs for bone age assessment. Biomed Signal Process Control 33:220–235CrossRef
34.
Zurück zum Zitat Fang B, Lu Y, Zhou Z, Li Z, Yan Y, Yang L, Jiao G, Li G (2019) Classification of genetically identical left and right irises using a convolutional neural network. Electronics 8(10):1109CrossRef Fang B, Lu Y, Zhou Z, Li Z, Yan Y, Yang L, Jiao G, Li G (2019) Classification of genetically identical left and right irises using a convolutional neural network. Electronics 8(10):1109CrossRef
35.
Zurück zum Zitat Ponzio F, Urgese G, Ficarra E, Di Cataldo S (2019) Dealing with lack of training data for convolutional neural networks: the case of digital pathology. Electronics 8(3):256CrossRef Ponzio F, Urgese G, Ficarra E, Di Cataldo S (2019) Dealing with lack of training data for convolutional neural networks: the case of digital pathology. Electronics 8(3):256CrossRef
36.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:​1502.​03167
37.
Zurück zum Zitat Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Computer vision and pattern recognition Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Computer vision and pattern recognition
38.
Zurück zum Zitat Ma Z, Yin S (2018) Deep attention network for melanoma detection improved by color constancy. In: International conference on information technology in medicine and education Ma Z, Yin S (2018) Deep attention network for melanoma detection improved by color constancy. In: International conference on information technology in medicine and education
39.
Zurück zum Zitat Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv Learning Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv Learning
40.
Zurück zum Zitat Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado SG, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray GD, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan KV, Viegas BF, Oriol Vinyals, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv Distributed, parallel, and cluster computing Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado SG, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray GD, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan KV, Viegas BF, Oriol Vinyals, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv Distributed, parallel, and cluster computing
41.
Zurück zum Zitat Gilsanz V, Ratib O (2005) Hand bone age: a digital atlas of skeletal maturity. Springer, Berlin Gilsanz V, Ratib O (2005) Hand bone age: a digital atlas of skeletal maturity. Springer, Berlin
42.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Computer vision and pattern recognition Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Computer vision and pattern recognition
43.
Zurück zum Zitat Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2016) Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: National conference on artificial intelligence Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2016) Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: National conference on artificial intelligence
44.
Zurück zum Zitat Huang G, Liu Z, Der Maaten LV, Weinberger KQ (2017) Densely connected convolutional networks. In: Computer vision and pattern recognition Huang G, Liu Z, Der Maaten LV, Weinberger KQ (2017) Densely connected convolutional networks. In: Computer vision and pattern recognition
Metadaten
Titel
Bone age assessment based on deep convolution neural network incorporated with segmentation
verfasst von
Yunyuan Gao
Tao Zhu
Xiaohua Xu
Publikationsdatum
28.09.2020
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 12/2020
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-020-02266-0

Weitere Artikel der Ausgabe 12/2020

International Journal of Computer Assisted Radiology and Surgery 12/2020 Zur Ausgabe

Premium Partner