Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

1. Bone and Cartilage Tissue Engineering

verfasst von : Yu-Chen Hu

Erschienen in: Gene Therapy for Cartilage and Bone Tissue Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bone and cartilage are important components in the skeleton system, providing the major structure of the body of vertebrates and conferring protection and support of soft tissues. This chapter briefly reviews the constituents of bones and articular cartilages as well as cells associated with bone/cartilage healing. This chapter further introduces the concepts and critical elements of tissue engineering for the repair/regeneration of bone and cartilage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering-Part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 19:308–326CrossRef Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering-Part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 19:308–326CrossRef
2.
Zurück zum Zitat Buckwalter JA, Einhorn TA, Bolander ME, Cruess RL (1996) Healing of the musculoskeletal tissues. In: Bucholz RW, Heckman JD, Court-Brown C, Tornetta P, Koval KJ, Wirth MA (eds) 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 261–304 Buckwalter JA, Einhorn TA, Bolander ME, Cruess RL (1996) Healing of the musculoskeletal tissues. In: Bucholz RW, Heckman JD, Court-Brown C, Tornetta P, Koval KJ, Wirth MA (eds) 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 261–304
3.
Zurück zum Zitat Ross MH, Reith EJ, Romrell LJ (1989) Histology: a text and atlas. Williams & Wilkins, Baltimore Ross MH, Reith EJ, Romrell LJ (1989) Histology: a text and atlas. Williams & Wilkins, Baltimore
4.
Zurück zum Zitat Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5:685–697CrossRef Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5:685–697CrossRef
5.
Zurück zum Zitat Gilbert SF (2000) Developmental biology. Sinauer Associates, Sunderland Gilbert SF (2000) Developmental biology. Sinauer Associates, Sunderland
6.
Zurück zum Zitat Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90A:99–110CrossRef Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90A:99–110CrossRef
7.
Zurück zum Zitat Phillips JE, Gersbach CA, Garcia AJ (2007) Virus-based gene therapy strategies for bone regeneration. Biomaterials 28:211–229CrossRef Phillips JE, Gersbach CA, Garcia AJ (2007) Virus-based gene therapy strategies for bone regeneration. Biomaterials 28:211–229CrossRef
8.
Zurück zum Zitat Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y et al (2010) Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. Tissue Eng Part B Rev 16:13–20CrossRef Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y et al (2010) Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. Tissue Eng Part B Rev 16:13–20CrossRef
9.
Zurück zum Zitat Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13:1135–1150CrossRef Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13:1135–1150CrossRef
10.
Zurück zum Zitat Zimmermann G, Wagner C, Schmeckenbecher K, Wentzensen A, Moghaddam A (2009) Treatment of tibial shaft non-unions: bone morphogenetic proteins versus autologous bone graft. Injury 40(Suppl 3):S50–S53CrossRef Zimmermann G, Wagner C, Schmeckenbecher K, Wentzensen A, Moghaddam A (2009) Treatment of tibial shaft non-unions: bone morphogenetic proteins versus autologous bone graft. Injury 40(Suppl 3):S50–S53CrossRef
11.
Zurück zum Zitat Tseng SS, Lee MA, Reddi H (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90A:92–98CrossRef Tseng SS, Lee MA, Reddi H (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90A:92–98CrossRef
12.
Zurück zum Zitat Marino JT, Ziran BH (2010) Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthop Clin North Am 41:15–26CrossRef Marino JT, Ziran BH (2010) Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthop Clin North Am 41:15–26CrossRef
13.
Zurück zum Zitat Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10:7–19CrossRef Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10:7–19CrossRef
14.
Zurück zum Zitat Gamradt SC, Lieberman JR (2004) Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 32:136–147CrossRef Gamradt SC, Lieberman JR (2004) Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 32:136–147CrossRef
15.
Zurück zum Zitat Eward WC, Kontogeorgakos V, Levin LS, Brigman BE (2010) Free vascularized fibular graft reconstruction of large skeletal defects after tumor resection. Clin Orthop Relat Res 468:590–598CrossRef Eward WC, Kontogeorgakos V, Levin LS, Brigman BE (2010) Free vascularized fibular graft reconstruction of large skeletal defects after tumor resection. Clin Orthop Relat Res 468:590–598CrossRef
16.
Zurück zum Zitat Smith JO, Aarvold A, Tayton ER, Dunlop DG, Oreffo RO (2011) Skeletal tissue regeneration: current approaches, challenges, and novel reconstructive strategies for an aging population. Tissue Eng Part B Rev 17:307–320CrossRef Smith JO, Aarvold A, Tayton ER, Dunlop DG, Oreffo RO (2011) Skeletal tissue regeneration: current approaches, challenges, and novel reconstructive strategies for an aging population. Tissue Eng Part B Rev 17:307–320CrossRef
17.
Zurück zum Zitat Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H (2005) The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 87:896–902CrossRef Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H (2005) The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 87:896–902CrossRef
18.
Zurück zum Zitat Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29:E8CrossRef Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29:E8CrossRef
19.
Zurück zum Zitat Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef
20.
Zurück zum Zitat Shegarfi H, Reikeras O (2009) Bone transplantation and immune response. J Orthop Surg 17:206–211 Shegarfi H, Reikeras O (2009) Bone transplantation and immune response. J Orthop Surg 17:206–211
21.
Zurück zum Zitat Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS et al (1990) Progressive development of the rat osteoblast phenotype in vitro – reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430CrossRef Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS et al (1990) Progressive development of the rat osteoblast phenotype in vitro – reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430CrossRef
22.
Zurück zum Zitat Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X et al (2012) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 17:1594–1601CrossRef Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X et al (2012) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 17:1594–1601CrossRef
23.
Zurück zum Zitat Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27CrossRef Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27CrossRef
24.
Zurück zum Zitat Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42:556–561CrossRef Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42:556–561CrossRef
25.
Zurück zum Zitat Trippel SB, Ghivizzani SC, Nixon AJ (2004) Gene-based approaches for the repair of articular cartilage. Gene Ther 11:351–359CrossRef Trippel SB, Ghivizzani SC, Nixon AJ (2004) Gene-based approaches for the repair of articular cartilage. Gene Ther 11:351–359CrossRef
26.
Zurück zum Zitat Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12:69–78CrossRef Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12:69–78CrossRef
27.
Zurück zum Zitat Grayson WL, Chao P-HG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26:181–189CrossRef Grayson WL, Chao P-HG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26:181–189CrossRef
28.
Zurück zum Zitat Barbero A, Grogan S, Schafer D, Heberer M, Mainil-Varlet P, Martin I (2004) Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476–484CrossRef Barbero A, Grogan S, Schafer D, Heberer M, Mainil-Varlet P, Martin I (2004) Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476–484CrossRef
29.
Zurück zum Zitat Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921CrossRef Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921CrossRef
30.
Zurück zum Zitat Gannon AR, Nagel T, Kelly DJ (2012) The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthritis Cartilage 20:1417–1425CrossRef Gannon AR, Nagel T, Kelly DJ (2012) The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthritis Cartilage 20:1417–1425CrossRef
31.
Zurück zum Zitat Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468CrossRef Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468CrossRef
32.
Zurück zum Zitat Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113CrossRef Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113CrossRef
33.
Zurück zum Zitat Bock HC, Michaeli P, Bode C, Schultz W, Kresse H, Herken R et al (2001) The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthritis Cartilage 9:654–663CrossRef Bock HC, Michaeli P, Bode C, Schultz W, Kresse H, Herken R et al (2001) The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthritis Cartilage 9:654–663CrossRef
34.
Zurück zum Zitat Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27:307–314CrossRef Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27:307–314CrossRef
35.
Zurück zum Zitat Van Manen MD, Nace J, Mont MA (2012) Management of primary knee osteoarthritis and indications for total knee arthroplasty for general practitioners. J Am Osteopath Assoc 112:709–715 Van Manen MD, Nace J, Mont MA (2012) Management of primary knee osteoarthritis and indications for total knee arthroplasty for general practitioners. J Am Osteopath Assoc 112:709–715
36.
Zurück zum Zitat Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G et al (2009) Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials 30:2683–2693CrossRef Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G et al (2009) Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials 30:2683–2693CrossRef
37.
Zurück zum Zitat Kirn-Safran CB, Gomes RR, Brown AJ, Carson DD (2004) Heparan sulfate proteoglycans: coordinators of multiple signaling pathways during chondrogenesis. Birth Defects Res C Embryo Today 72:69–88CrossRef Kirn-Safran CB, Gomes RR, Brown AJ, Carson DD (2004) Heparan sulfate proteoglycans: coordinators of multiple signaling pathways during chondrogenesis. Birth Defects Res C Embryo Today 72:69–88CrossRef
38.
Zurück zum Zitat Tang QO, Shakib K, Heliotis M, Tsiridis E, Mantalaris A, Ripamonti U (2009) TGF-beta3: a potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther 9:689–701CrossRef Tang QO, Shakib K, Heliotis M, Tsiridis E, Mantalaris A, Ripamonti U (2009) TGF-beta3: a potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther 9:689–701CrossRef
39.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef
40.
Zurück zum Zitat Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen ISY, Lieberman JR (2006) In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 24:1709–1721CrossRef Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen ISY, Lieberman JR (2006) In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 24:1709–1721CrossRef
41.
Zurück zum Zitat Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A et al (2008) Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 42:921–931CrossRef Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A et al (2008) Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 42:921–931CrossRef
42.
Zurück zum Zitat Lattanzi W, Parrilla C, Fetoni A, Logroscino G, Straface G, Pecorini G et al (2008) Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther 15:1330–1343CrossRef Lattanzi W, Parrilla C, Fetoni A, Logroscino G, Straface G, Pecorini G et al (2008) Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther 15:1330–1343CrossRef
43.
Zurück zum Zitat Zhang XL, Mao ZB, Yu CL (2004) Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res 22:742–750CrossRef Zhang XL, Mao ZB, Yu CL (2004) Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res 22:742–750CrossRef
44.
Zurück zum Zitat Gelse K, von der Mark K, Aigner T, Park J, Schneider H (2003) Articular cartilage repair by gene therapy using growth factor- producing mesenchymal cells. Arthritis Rheum 48:430–441CrossRef Gelse K, von der Mark K, Aigner T, Park J, Schneider H (2003) Articular cartilage repair by gene therapy using growth factor- producing mesenchymal cells. Arthritis Rheum 48:430–441CrossRef
45.
Zurück zum Zitat Cao L, Yang F, Liu G, Yu D, Li H, Fan Q et al (2011) The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32:3910–3920CrossRef Cao L, Yang F, Liu G, Yu D, Li H, Fan Q et al (2011) The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32:3910–3920CrossRef
46.
Zurück zum Zitat Sheyn D, Ruthemann M, Mizrahi O, Kallai I, Zilberman Y, Tawackoli W et al (2010) Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion. Tissue Eng Part A 16:3679–3686CrossRef Sheyn D, Ruthemann M, Mizrahi O, Kallai I, Zilberman Y, Tawackoli W et al (2010) Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion. Tissue Eng Part A 16:3679–3686CrossRef
47.
Zurück zum Zitat Lee J-M, Im G-I (2012) SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 33:2016–2024CrossRef Lee J-M, Im G-I (2012) SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 33:2016–2024CrossRef
48.
Zurück zum Zitat Lin C-Y, Lin K-J, Kao C-Y, Chen M-C, Yen T-Z, Lo W-H et al (2011) The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 32:6505–6514CrossRef Lin C-Y, Lin K-J, Kao C-Y, Chen M-C, Yen T-Z, Lo W-H et al (2011) The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 32:6505–6514CrossRef
49.
Zurück zum Zitat Jukes JM, Moroni L, van Blitterswijk CA, de Boer J (2008) Critical steps toward a tissue-engineered cartilage implant using embryonic stem cells. Tissue Eng Part A 14:135–147CrossRef Jukes JM, Moroni L, van Blitterswijk CA, de Boer J (2008) Critical steps toward a tissue-engineered cartilage implant using embryonic stem cells. Tissue Eng Part A 14:135–147CrossRef
50.
Zurück zum Zitat Toh WS, Lee EH, Guo X-M, Chan JKY, Yeow CH, Choo AB et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980CrossRef Toh WS, Lee EH, Guo X-M, Chan JKY, Yeow CH, Choo AB et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980CrossRef
51.
Zurück zum Zitat Ye J-H, Xu Y-J, Gao J, Yan S-G, Zhao J, Tu Q et al (2011) Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076CrossRef Ye J-H, Xu Y-J, Gao J, Yan S-G, Zhao J, Tu Q et al (2011) Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076CrossRef
52.
Zurück zum Zitat Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867CrossRef Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867CrossRef
53.
Zurück zum Zitat Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interf 5:3847–3854CrossRef Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interf 5:3847–3854CrossRef
54.
Zurück zum Zitat Chen H-C, Chang Y-H, Chuang C-K, Lin C-Y, Sung L-Y, Wang Y-H et al (2009) The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 30:674–681CrossRef Chen H-C, Chang Y-H, Chuang C-K, Lin C-Y, Sung L-Y, Wang Y-H et al (2009) The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 30:674–681CrossRef
55.
Zurück zum Zitat Wang W, Li B, Li Y, Jiang Y, Ouyang H, Gao C (2010) In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31:5953–5965CrossRef Wang W, Li B, Li Y, Jiang Y, Ouyang H, Gao C (2010) In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31:5953–5965CrossRef
56.
Zurück zum Zitat Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9:679–688CrossRef Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9:679–688CrossRef
57.
Zurück zum Zitat Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA, Kelly DJ (2010) The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 38:2896–2909CrossRef Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA, Kelly DJ (2010) The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 38:2896–2909CrossRef
58.
Zurück zum Zitat Bright C, Park YS, Sieber AN, Kostuik JP, Leong KW (2006) In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine (Phila Pa 1976) 31:2163–2172CrossRef Bright C, Park YS, Sieber AN, Kostuik JP, Leong KW (2006) In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine (Phila Pa 1976) 31:2163–2172CrossRef
59.
Zurück zum Zitat Deng T, Lv J, Pang J, Liu B, Ke J (2012) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. doi:10.1002/term.556 Deng T, Lv J, Pang J, Liu B, Ke J (2012) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. doi:10.​1002/​term.​556
60.
Zurück zum Zitat Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222CrossRef Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222CrossRef
61.
Zurück zum Zitat Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888CrossRef Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888CrossRef
62.
Zurück zum Zitat Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30:4401–4406CrossRef Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30:4401–4406CrossRef
63.
Zurück zum Zitat Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z (2010) TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A 95:982–992CrossRef Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z (2010) TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A 95:982–992CrossRef
64.
Zurück zum Zitat Nettles DL, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8:1009–1016CrossRef Nettles DL, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8:1009–1016CrossRef
65.
Zurück zum Zitat Wang XH, Cui FZ, Feng QL, Li JC, Zhang YH (2003) Preparation and characterization of collagen/chitosan matrices as potential biomaterials. J Bioact Compat Polym 18:453–467CrossRef Wang XH, Cui FZ, Feng QL, Li JC, Zhang YH (2003) Preparation and characterization of collagen/chitosan matrices as potential biomaterials. J Bioact Compat Polym 18:453–467CrossRef
66.
Zurück zum Zitat Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N et al (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27:6138–6149CrossRef Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N et al (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27:6138–6149CrossRef
67.
Zurück zum Zitat Li ZS, Zhang MQ (2005) Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res 75A:485–493CrossRef Li ZS, Zhang MQ (2005) Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res 75A:485–493CrossRef
68.
Zurück zum Zitat Zhao L, Chang J (2004) Preparation and characterization of macroporous chitosan/wollastonite composite scaffolds for tissue engineering. J Mater Sci Mater Med 15:625–629CrossRef Zhao L, Chang J (2004) Preparation and characterization of macroporous chitosan/wollastonite composite scaffolds for tissue engineering. J Mater Sci Mater Med 15:625–629CrossRef
69.
Zurück zum Zitat Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M (2011) State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 5:e36–e51CrossRef Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M (2011) State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 5:e36–e51CrossRef
70.
Zurück zum Zitat Cheng NC, Estes BT, Awad HA, Guilak F (2009) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15:231–241CrossRef Cheng NC, Estes BT, Awad HA, Guilak F (2009) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15:231–241CrossRef
71.
Zurück zum Zitat Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III-50–III-55CrossRef Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III-50–III-55CrossRef
72.
Zurück zum Zitat Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. In: Haycock JW (ed) 3D cell culture, vol 695. Humana Press, New York, pp 17–39CrossRef Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. In: Haycock JW (ed) 3D cell culture, vol 695. Humana Press, New York, pp 17–39CrossRef
73.
Zurück zum Zitat Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M (2013) Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29:174–186CrossRef Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M (2013) Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29:174–186CrossRef
74.
Zurück zum Zitat Zanetti AS, Sabliov C, Gimble JM, Hayes DJ (2013) Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater 101:187–199CrossRef Zanetti AS, Sabliov C, Gimble JM, Hayes DJ (2013) Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater 101:187–199CrossRef
76.
Zurück zum Zitat Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins DJ, Serra R (2002) TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 129:1913–1924 Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins DJ, Serra R (2002) TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 129:1913–1924
77.
Zurück zum Zitat van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB (2002) Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 10:631–637CrossRef van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB (2002) Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 10:631–637CrossRef
78.
Zurück zum Zitat Redini F, Galera P, Mauviel A, Loyau G, Pujol JP (1988) Transforming growth factor-β1 stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett 234:172–176CrossRef Redini F, Galera P, Mauviel A, Loyau G, Pujol JP (1988) Transforming growth factor-β1 stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett 234:172–176CrossRef
79.
Zurück zum Zitat Andrews HJ, Edwards TA, Cawston TE, Hazleman BL (1989) Transforming growth factor-β1 causes partial inhibition of interleukin 1-stimulated cartilage degradation in vitro. Biochem Biophys Res Commun 162:144–150CrossRef Andrews HJ, Edwards TA, Cawston TE, Hazleman BL (1989) Transforming growth factor-β1 causes partial inhibition of interleukin 1-stimulated cartilage degradation in vitro. Biochem Biophys Res Commun 162:144–150CrossRef
80.
Zurück zum Zitat Madry H, Padera R, Seidel J, Langer R, Freed LE, Trippel SB et al (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 13:1621–1630CrossRef Madry H, Padera R, Seidel J, Langer R, Freed LE, Trippel SB et al (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 13:1621–1630CrossRef
81.
Zurück zum Zitat Li J, Kim KS, Park JS, Elmer WA, Hutton WC, Yoon ST (2003) BMP-2 and CDMP-2: stimulation of chondrocyte production of proteoglycan. J Orthop Sci 8:829–835CrossRef Li J, Kim KS, Park JS, Elmer WA, Hutton WC, Yoon ST (2003) BMP-2 and CDMP-2: stimulation of chondrocyte production of proteoglycan. J Orthop Sci 8:829–835CrossRef
82.
Zurück zum Zitat Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13:527–536CrossRef Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13:527–536CrossRef
83.
Zurück zum Zitat Kaps C, Bramlage C, Smolian H, Haisch A, Ungethum U, Burmester GR et al (2002) Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46:149–162CrossRef Kaps C, Bramlage C, Smolian H, Haisch A, Ungethum U, Burmester GR et al (2002) Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46:149–162CrossRef
84.
Zurück zum Zitat Merino R, Macias D, Ganan Y, Economides AN, Wang X, Wu Q et al (1999) Expression and function of GDF-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206:33–45CrossRef Merino R, Macias D, Ganan Y, Economides AN, Wang X, Wu Q et al (1999) Expression and function of GDF-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206:33–45CrossRef
85.
Zurück zum Zitat Gruber R, Mayer C, Bobacz K, Krauth MT, Graninger W, Luyten FP et al (2001) Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells. Endocrinology 142:2087–2094 Gruber R, Mayer C, Bobacz K, Krauth MT, Graninger W, Luyten FP et al (2001) Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells. Endocrinology 142:2087–2094
86.
Zurück zum Zitat Klein-Nulend J, Semeins CM, Mulder JW, Winters HAH, Goei SW, Ooms ME et al (1998) Stimulation of cartilage differentiation by osteogenic protein-1 in cultures of human perichondrium. Tissue Eng 4:305–313CrossRef Klein-Nulend J, Semeins CM, Mulder JW, Winters HAH, Goei SW, Ooms ME et al (1998) Stimulation of cartilage differentiation by osteogenic protein-1 in cultures of human perichondrium. Tissue Eng 4:305–313CrossRef
87.
Zurück zum Zitat Louwerse RT, Heyligers IC, Klein-Nulend J, Sugihara S, van Kampen GP, Semeins CM et al (2000) Use of recombinant osteogenic protein-1 for the repair of subchondral defects in articular cartilage in goats. J Biomed Mater Res 49:506–516CrossRef Louwerse RT, Heyligers IC, Klein-Nulend J, Sugihara S, van Kampen GP, Semeins CM et al (2000) Use of recombinant osteogenic protein-1 for the repair of subchondral defects in articular cartilage in goats. J Biomed Mater Res 49:506–516CrossRef
88.
Zurück zum Zitat Harvey AK, Yu XP, Frolik CA, Chandrasekhar S (1999) Parathyroid hormone-(1–34) enhances aggrecan synthesis via an insulin-like growth factor-I pathway. J Biol Chem 274:23249–23255CrossRef Harvey AK, Yu XP, Frolik CA, Chandrasekhar S (1999) Parathyroid hormone-(1–34) enhances aggrecan synthesis via an insulin-like growth factor-I pathway. J Biol Chem 274:23249–23255CrossRef
89.
Zurück zum Zitat Erdmann S, Muller W, Bahrami S, Vornehm SI, Mayer H, Bruckner P et al (1996) Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes. J Cell Biol 135:1179–1191CrossRef Erdmann S, Muller W, Bahrami S, Vornehm SI, Mayer H, Bruckner P et al (1996) Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes. J Cell Biol 135:1179–1191CrossRef
90.
Zurück zum Zitat Bi WM, Deng JM, Zhang ZP, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89CrossRef Bi WM, Deng JM, Zhang ZP, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89CrossRef
91.
Zurück zum Zitat Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M et al (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290CrossRef Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M et al (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290CrossRef
92.
Zurück zum Zitat Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127:3141–3159 Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127:3141–3159
93.
Zurück zum Zitat Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622CrossRef Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622CrossRef
94.
Zurück zum Zitat Evans CH, Gouze E, Gouze JN, Robbins PD, Ghivizzani SC (2006) Gene therapeutic approaches–transfer in vivo. Adv Drug Deliv Rev 58:243–258CrossRef Evans CH, Gouze E, Gouze JN, Robbins PD, Ghivizzani SC (2006) Gene therapeutic approaches–transfer in vivo. Adv Drug Deliv Rev 58:243–258CrossRef
Metadaten
Titel
Bone and Cartilage Tissue Engineering
verfasst von
Yu-Chen Hu
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-53923-7_1

Neuer Inhalt