Skip to main content
Erschienen in: Journal of Materials Science 5/2021

04.11.2020 | Materials for life sciences

Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells

verfasst von: Leonard Bauer, Maja Antunović, Anamarija Rogina, Marica Ivanković, Hrvoje Ivanković

Erschienen in: Journal of Materials Science | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bone-mimetic highly porous Mg-substituted calcium phosphate scaffolds, composed of hydroxyapatite (HAP) and whitlockite (WH), were synthesized by hydrothermal method at 200 °C, using calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH4H2PO4) and magnesium chloride hexahydrate (MgCl2 × 6H2O) or magnesium perchlorate (Mg(ClO4)2) as reagents. The effect of Mg content on the compositional and morphological properties of scaffolds was studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis. Structural refinements performed by Rietveld method indicated that Mg2+ ions were preferentially incorporated into the WH phase. SEM images of all prepared scaffolds showed that the interconnected structure of the cuttlefish bone was completely maintained after the hydrothermal synthesis. Results of compression tests showed a positive impact of the whitlockite phase on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on scaffolds in osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-CaP scaffolds with the HAP:WH wt ratio of 90:10 and 70:30 exhibited higher expression of collagen type I and osteocalcin than pure HAP scaffold. Calcium deposition was confirmed by Alizarin Red staining. Positive effect of Mg2+ ions on the differentiation of hMSCs on porous 3D scaffolds was also confirmed by reverse transcription-quantitative polymerase chain reaction analysis.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498 Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498
2.
Zurück zum Zitat Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6:715–734 Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6:715–734
3.
Zurück zum Zitat Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669 Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669
4.
Zurück zum Zitat Le Geros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753 Le Geros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753
5.
Zurück zum Zitat Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894 Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894
6.
Zurück zum Zitat Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347 Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347
7.
Zurück zum Zitat Supova M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:9203–9231 Supova M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:9203–9231
8.
Zurück zum Zitat Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE (2018) Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials 11(11):2081. https://doi.org/10.3390/ma11112081CrossRef Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE (2018) Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials 11(11):2081. https://​doi.​org/​10.​3390/​ma11112081CrossRef
9.
Zurück zum Zitat Si L, Zhang W, Jiang X (2019) Applications of bioactive ions in bone regeneration. Chin J Dent Res 22:93–104 Si L, Zhang W, Jiang X (2019) Applications of bioactive ions in bone regeneration. Chin J Dent Res 22:93–104
10.
Zurück zum Zitat Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247 Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247
11.
Zurück zum Zitat Ren F, Leng Y, Xin R, Ge X (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater 6:2787–2796 Ren F, Leng Y, Xin R, Ge X (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater 6:2787–2796
12.
Zurück zum Zitat Farzadi A, Bakhshi F, Solati-Hashjin M, Asadi-Eydivand M, Osman NAA (2014) Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceram Int 40:6021–6029 Farzadi A, Bakhshi F, Solati-Hashjin M, Asadi-Eydivand M, Osman NAA (2014) Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceram Int 40:6021–6029
13.
Zurück zum Zitat Yuan XY, Zhu BS, Tong GS, Su Y, Zhu XY (2013) Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes. J Mater Chem B 1:6551–6559 Yuan XY, Zhu BS, Tong GS, Su Y, Zhu XY (2013) Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes. J Mater Chem B 1:6551–6559
14.
Zurück zum Zitat Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C Mater Biol Appl 35:106–114 Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C Mater Biol Appl 35:106–114
15.
Zurück zum Zitat Stipniece L, Salma-Ancane K, Borodajenko N, Sokolova M, Jakovlevs D, Berzina-Cimdina L (2014) Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram Int 40:3261–3267 Stipniece L, Salma-Ancane K, Borodajenko N, Sokolova M, Jakovlevs D, Berzina-Cimdina L (2014) Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram Int 40:3261–3267
16.
Zurück zum Zitat Stipniece L, Narkevica I, Salma-Ancane K (2017) Low-temperature synthesis of nanocrystalline hydroxyapatite: effect of Mg and Sr content. J Am Ceram Soc 100:1697–1706 Stipniece L, Narkevica I, Salma-Ancane K (2017) Low-temperature synthesis of nanocrystalline hydroxyapatite: effect of Mg and Sr content. J Am Ceram Soc 100:1697–1706
17.
Zurück zum Zitat Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS (2004) Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials 25:4647–4657 Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS (2004) Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials 25:4647–4657
18.
Zurück zum Zitat Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behaviour of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806 Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behaviour of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806
19.
Zurück zum Zitat Neuman WF, Mulryan BJ (1971) Synthetic hydroxyapatite crystals. Cal Tissue Res 7(1):133–138 Neuman WF, Mulryan BJ (1971) Synthetic hydroxyapatite crystals. Cal Tissue Res 7(1):133–138
20.
Zurück zum Zitat Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78 Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78
21.
Zurück zum Zitat Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan ZE, Smith ME (2011) Magnesium incorporation into hydroxyapatite. Biomaterials 32:1826–1837 Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan ZE, Smith ME (2011) Magnesium incorporation into hydroxyapatite. Biomaterials 32:1826–1837
22.
Zurück zum Zitat Jang HL, Jin K, Lee J, Kim Y, Nahm SH, Hong KS, Nam KT (2013) Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 8:634–641 Jang HL, Jin K, Lee J, Kim Y, Nahm SH, Hong KS, Nam KT (2013) Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 8:634–641
23.
Zurück zum Zitat Jang HL, Lee HK, Jin K, Ahn HY, Lee HE, Nam KT (2015) Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. J Mater Chem B 3:1342–1349 Jang HL, Lee HK, Jin K, Ahn HY, Lee HE, Nam KT (2015) Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. J Mater Chem B 3:1342–1349
24.
Zurück zum Zitat Elliott JC (2013) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam Elliott JC (2013) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam
25.
Zurück zum Zitat Driessens FC, Verbeeck R (1990) Biominerals. CRC Press, Florida Driessens FC, Verbeeck R (1990) Biominerals. CRC Press, Florida
26.
Zurück zum Zitat Calvo C, Gopal R (1975) Crystal-structure of whitlockite from Palermo Quarry. Am Mineral 60:120–133 Calvo C, Gopal R (1975) Crystal-structure of whitlockite from Palermo Quarry. Am Mineral 60:120–133
27.
Zurück zum Zitat Gopal R, Calvo C (1972) Structural relationship of whitlockite and β-Ca3(PO4)2. Nat Phys Sci 237:30–32 Gopal R, Calvo C (1972) Structural relationship of whitlockite and β-Ca3(PO4)2. Nat Phys Sci 237:30–32
28.
Zurück zum Zitat Jang HL, Zheng GB, Park J, Kim HD, Baek HR, Lee HK, Lee K, Han HN, Lee CK, Hwang NS, Lee JH, Nam KT (2016) In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv Healthc Mater 5:128–136 Jang HL, Zheng GB, Park J, Kim HD, Baek HR, Lee HK, Lee K, Han HN, Lee CK, Hwang NS, Lee JH, Nam KT (2016) In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv Healthc Mater 5:128–136
29.
Zurück zum Zitat Kim HD, Jang HL, Ahn HY, Lee HK, Park J, Lee ES, Lee EA, Jeong YH, Kim DG, Nam KT (2017) Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 112:31–43 Kim HD, Jang HL, Ahn HY, Lee HK, Park J, Lee ES, Lee EA, Jeong YH, Kim DG, Nam KT (2017) Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 112:31–43
30.
Zurück zum Zitat Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect Tissue Res 55:155–159 Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect Tissue Res 55:155–159
31.
Zurück zum Zitat Chaudhry AA, Goodall JBM, Vickers M, Cockcroft JK, Rehman IU, Knowles JC, Darr JA (2008) Synthesis and characterisation of magnesium substituted calcium phosphate bioceramic nanoparticles made via continuous hydrothermal flow synthesis. J Mater Chem 18:5900–5908 Chaudhry AA, Goodall JBM, Vickers M, Cockcroft JK, Rehman IU, Knowles JC, Darr JA (2008) Synthesis and characterisation of magnesium substituted calcium phosphate bioceramic nanoparticles made via continuous hydrothermal flow synthesis. J Mater Chem 18:5900–5908
32.
Zurück zum Zitat Luna-Domínguez JH, Téllez-Jiménez H, Hernández-Cocoletzi H, García-Hernández M, Melo-Banda JA, Nygren H (2018) Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceram Int 44:22583–22591 Luna-Domínguez JH, Téllez-Jiménez H, Hernández-Cocoletzi H, García-Hernández M, Melo-Banda JA, Nygren H (2018) Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceram Int 44:22583–22591
33.
Zurück zum Zitat Cheng H, Chabok R, Guan XF, Chawla A, Li YX, Khademhosseini A, Jang HL (2018) Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater 69:342–351 Cheng H, Chabok R, Guan XF, Chawla A, Li YX, Khademhosseini A, Jang HL (2018) Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater 69:342–351
34.
Zurück zum Zitat Ivanković H, Gallego Ferrer G, Tkalčec E, Orlić S, Ivanković M (2009) Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci Mater Med 20:1039–1046 Ivanković H, Gallego Ferrer G, Tkalčec E, Orlić S, Ivanković M (2009) Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci Mater Med 20:1039–1046
35.
Zurück zum Zitat Milovac D, Gallego Ferrer G, Ivanković M, Ivanković H (2014) PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Mater Sci Eng C 34:437–445 Milovac D, Gallego Ferrer G, Ivanković M, Ivanković H (2014) PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Mater Sci Eng C 34:437–445
36.
Zurück zum Zitat Milovac D, Gamboa-Martinez TC, Ivanković M, Gallego Ferrer G, Ivanković H (2014) PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. Mater Sci Eng C 42:264–272 Milovac D, Gamboa-Martinez TC, Ivanković M, Gallego Ferrer G, Ivanković H (2014) PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. Mater Sci Eng C 42:264–272
37.
Zurück zum Zitat Rogina A, Antunović M, Milovac D (2019) Biomimetic design of bone substitutes based on cuttlefish bone-derived hydroxyapatite and biodegradable polymers. J Biomed Mater Res B 107:197–204 Rogina A, Antunović M, Milovac D (2019) Biomimetic design of bone substitutes based on cuttlefish bone-derived hydroxyapatite and biodegradable polymers. J Biomed Mater Res B 107:197–204
38.
Zurück zum Zitat Ressler A, Cvetnić M, Antunović M, Marijanović I, Ivanković M, Ivanković H (2020) Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J Biomed Mater Res B 108:1697–1709 Ressler A, Cvetnić M, Antunović M, Marijanović I, Ivanković M, Ivanković H (2020) Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J Biomed Mater Res B 108:1697–1709
39.
Zurück zum Zitat TOPAS V4 (2002) General profile and structure analysis software for powder diffraction data-user’s manual. Bruker AXS, Karlsruhe TOPAS V4 (2002) General profile and structure analysis software for powder diffraction data-user’s manual. Bruker AXS, Karlsruhe
40.
Zurück zum Zitat Sudarsanan K, Young RA (1969) Significant precision in crystal structural details: holly springs hydroxyapatite. Acta Crystallogr B 25:1534–1543 Sudarsanan K, Young RA (1969) Significant precision in crystal structural details: holly springs hydroxyapatite. Acta Crystallogr B 25:1534–1543
41.
Zurück zum Zitat Coelho A (2000) Whole profile structure solution from powder diffraction data using simulated annealing. J Appl Cryst 33:899–908 Coelho A (2000) Whole profile structure solution from powder diffraction data using simulated annealing. J Appl Cryst 33:899–908
42.
Zurück zum Zitat Gopal R, Calvo C, Ito J, Sabine WK (1974) Crystal structure of synthetic Mg-whitlockite, Ca18Mg2H2(PO4)14. Can J Chem 52:1155–1164 Gopal R, Calvo C, Ito J, Sabine WK (1974) Crystal structure of synthetic Mg-whitlockite, Ca18Mg2H2(PO4)14. Can J Chem 52:1155–1164
43.
Zurück zum Zitat Caspi EN, Pokroy B, Lee PL, Quintana JP, Zolotoyabko E (2005) On the structure of aragonite. Acta Crystallogr B 61:129–132 Caspi EN, Pokroy B, Lee PL, Quintana JP, Zolotoyabko E (2005) On the structure of aragonite. Acta Crystallogr B 61:129–132
44.
Zurück zum Zitat Matić I, Antunović M, Brkić S, Josipović P, Mihalić KC, Karlak I, Ivković A, Marijanović I (2016) Expression of OCT-4 and SOX-2 in bone marrow-derived human mesenchymal stem cells during osteogenic differentiation. Open Access Maced J Med Sci 4:9–16 Matić I, Antunović M, Brkić S, Josipović P, Mihalić KC, Karlak I, Ivković A, Marijanović I (2016) Expression of OCT-4 and SOX-2 in bone marrow-derived human mesenchymal stem cells during osteogenic differentiation. Open Access Maced J Med Sci 4:9–16
45.
Zurück zum Zitat Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, Marijanović I, Gallego Ferrer G, Ivanković M, Ivanković H (2017) Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers 9(9):387. https://doi.org/10.3390/polym9090387CrossRef Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, Marijanović I, Gallego Ferrer G, Ivanković M, Ivanković H (2017) Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers 9(9):387. https://​doi.​org/​10.​3390/​polym9090387CrossRef
46.
Zurück zum Zitat Zyman Z, Tkachenko M, Epple M, Polyakov M, Naboka M (2006) Magnesium-substituted hydroxyapatite ceramics. Materialwiss Werkstofftech 37:474–477 Zyman Z, Tkachenko M, Epple M, Polyakov M, Naboka M (2006) Magnesium-substituted hydroxyapatite ceramics. Materialwiss Werkstofftech 37:474–477
47.
Zurück zum Zitat Mehrjoo M, Javadpour J, Shokrgozar MA, Farokhi M, Javadian S, Bonakdar S (2015) Effect of magnesium substitution on structural and biological properties of synthetic hydroxyapatite powder. Mater Expr 5:41–48 Mehrjoo M, Javadpour J, Shokrgozar MA, Farokhi M, Javadian S, Bonakdar S (2015) Effect of magnesium substitution on structural and biological properties of synthetic hydroxyapatite powder. Mater Expr 5:41–48
48.
Zurück zum Zitat Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879 Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879
49.
Zurück zum Zitat LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. In: LeGeros RZ, Myers HM (eds) Monographs in Oral Sciences. Karger, Basel, pp 37–58 LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. In: LeGeros RZ, Myers HM (eds) Monographs in Oral Sciences. Karger, Basel, pp 37–58
50.
Zurück zum Zitat El Feki H, Rey C, Vignoles M (1991) Carbonate ions in apatites: infrared investigations in the v4 CO3 domain. Calcif Tissue Int 49:269–274 El Feki H, Rey C, Vignoles M (1991) Carbonate ions in apatites: infrared investigations in the v4 CO3 domain. Calcif Tissue Int 49:269–274
51.
Zurück zum Zitat Elliott JC, Holcomb DW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 37:372–375 Elliott JC, Holcomb DW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 37:372–375
52.
Zurück zum Zitat Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone-mineral—a resolution enhanced Fourier-transform infrared-spectroscopy study. Calcif Tissue Int 45:157–164 Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone-mineral—a resolution enhanced Fourier-transform infrared-spectroscopy study. Calcif Tissue Int 45:157–164
53.
Zurück zum Zitat Bonel G (1972a) Contribution a l’etude de la carbonation des apatites. Part I Ann Chim 7:65–87 Bonel G (1972a) Contribution a l’etude de la carbonation des apatites. Part I Ann Chim 7:65–87
54.
Zurück zum Zitat Bonel G (1972b) Contribution a l’etude de la carbonation des apatites. Parts II and III Ann Chim 7:127–144 Bonel G (1972b) Contribution a l’etude de la carbonation des apatites. Parts II and III Ann Chim 7:127–144
55.
Zurück zum Zitat Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C (2014) Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology. J Archaeol Sci 49:134–141 Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C (2014) Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology. J Archaeol Sci 49:134–141
56.
Zurück zum Zitat Rocha JHG, Lemos AF, Agathopoulos S, Kannan S, Valério P, Ferreira JMF (2006) Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J Biomed Mater Res Part A 77:160–168 Rocha JHG, Lemos AF, Agathopoulos S, Kannan S, Valério P, Ferreira JMF (2006) Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J Biomed Mater Res Part A 77:160–168
57.
Zurück zum Zitat Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342 Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342
58.
Zurück zum Zitat Tkalčec E, Popović J, Orlić S, Milardović S, Ivanković H (2014) Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater Sci Eng C 42:578–586 Tkalčec E, Popović J, Orlić S, Milardović S, Ivanković H (2014) Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater Sci Eng C 42:578–586
59.
Zurück zum Zitat Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Suarez KN, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68:45–51 Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Suarez KN, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68:45–51
60.
Zurück zum Zitat Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143 Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143
61.
Zurück zum Zitat Ellies LG, Carter JM, Natiella JR, Featherstone JDB, Nelson DGA (1988) Quantitative analysis of early in vivo tissue response to synthetic apatite implants. J Biomed Mater Res A 22:137–148 Ellies LG, Carter JM, Natiella JR, Featherstone JDB, Nelson DGA (1988) Quantitative analysis of early in vivo tissue response to synthetic apatite implants. J Biomed Mater Res A 22:137–148
62.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491 Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491
63.
Zurück zum Zitat Tampieri A, Celotti GC, Landi E, Sandri M (2004) Magnesium doped hydroxyapatite: synthesis and characterization. Key Eng Mater 264:2051–2054 Tampieri A, Celotti GC, Landi E, Sandri M (2004) Magnesium doped hydroxyapatite: synthesis and characterization. Key Eng Mater 264:2051–2054
64.
Zurück zum Zitat Tas AC (2016) Transformation of Brushite (CaHPO4· 2H2O) to Whitlockite (Ca9Mg(HPO4)(PO4)6) or other CaPs in physiologically relevant solutions. J Am Ceram Soc 99:1200–1206 Tas AC (2016) Transformation of Brushite (CaHPO4· 2H2O) to Whitlockite (Ca9Mg(HPO4)(PO4)6) or other CaPs in physiologically relevant solutions. J Am Ceram Soc 99:1200–1206
65.
Zurück zum Zitat Qi C, Chen F, Wu J, Zhu Y-J, Hao C-N, Duan J-L (2016) Magnesium whitlockite hollow microspheres: a comparison of microwave-hydrothermal and conventional hydrothermal syntheses using fructose 1,6-bisphosphate, and application in protein adsorption. RSC Adv 6:33393–33402 Qi C, Chen F, Wu J, Zhu Y-J, Hao C-N, Duan J-L (2016) Magnesium whitlockite hollow microspheres: a comparison of microwave-hydrothermal and conventional hydrothermal syntheses using fructose 1,6-bisphosphate, and application in protein adsorption. RSC Adv 6:33393–33402
66.
Zurück zum Zitat Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341 Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341
67.
Zurück zum Zitat Mouriño V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R. Soc Interface 9:401–419 Mouriño V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R. Soc Interface 9:401–419
68.
Zurück zum Zitat Li QQ, Gao ZW, Chen Y, Guan MX (2017) The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 28:439–445 Li QQ, Gao ZW, Chen Y, Guan MX (2017) The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 28:439–445
69.
Zurück zum Zitat Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T (1997) Differentiation and transforming growth factor-β receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 272:29309–29316 Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T (1997) Differentiation and transforming growth factor-β receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 272:29309–29316
70.
Zurück zum Zitat Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymalstem cells. Biochem Biophy Res Commun 347:347–357 Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymalstem cells. Biochem Biophy Res Commun 347:347–357
71.
Zurück zum Zitat Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76:593–629 Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76:593–629
72.
Zurück zum Zitat Stein GS, Lian JB, Van Wijnen AJ, Stein JL (1997) The osteocalcin gene: A model for multiple parameters of skeletal-specific transcriptional control. Mol Biol Rep 24:185–196 Stein GS, Lian JB, Van Wijnen AJ, Stein JL (1997) The osteocalcin gene: A model for multiple parameters of skeletal-specific transcriptional control. Mol Biol Rep 24:185–196
73.
Zurück zum Zitat Gundberg CM (2000) Biochemical markers of bone formation. Clin Lab Med 20:489–501 Gundberg CM (2000) Biochemical markers of bone formation. Clin Lab Med 20:489–501
74.
Zurück zum Zitat Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448 Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448
75.
Zurück zum Zitat Rad MR, Liu D, He H, Brooks H, Xiao M, Wise GE, Yao S (2015) The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs). Arch Oral Biol 60:546–556 Rad MR, Liu D, He H, Brooks H, Xiao M, Wise GE, Yao S (2015) The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs). Arch Oral Biol 60:546–556
76.
Zurück zum Zitat Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41:462–473 Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41:462–473
Metadaten
Titel
Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells
verfasst von
Leonard Bauer
Maja Antunović
Anamarija Rogina
Marica Ivanković
Hrvoje Ivanković
Publikationsdatum
04.11.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05489-3

Weitere Artikel der Ausgabe 5/2021

Journal of Materials Science 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.