Skip to main content
Erschienen in: Journal of Materials Science 5/2021

06.11.2020 | Computation & theory

First-principles investigation of methanol synthesis from CO2 hydrogenation on Cu@Pd core–shell surface

verfasst von: Jiangshan Liu, Qiang Ke, Xin Chen

Erschienen in: Journal of Materials Science | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the density functional theory calculation is used to investigate the reaction mechanisms of CO2 hydrogenation to CH3OH on the Cu@Pd core–shell surface. In particular, the possible adsorption sites, structural parameters, and adsorption energies of all intermediates are determined. All the reaction energies and the activation barriers of elementary steps involved in the possible hydrogenation mechanisms, including the HCOO pathway, the COOH pathway, and the RWGS + CO-Hydro pathway, are studied in detail. The calculated activation barrier of the rate-determining step is 1.84 eV for the HCOO pathway, 1.45 eV for the COOH pathway, and 1.17 eV for the RWGS + CO-Hydro pathway. Therefore, the most favorable hydrogenation mechanism on the Cu@Pd core–shell surface is following the reverse water–gas shift reaction followed by CO hydrogenation and will be completed via the route of CO2* → trans-COOH* → cis-COOH* → CO* → HCO* → HCOH* → H2COH* → CH3OH*. Compared with Cu-based catalysts such as Cu(111), Cu29 cluster, Cu19 cluster, and Cu(211), the Cu@Pd core–shell catalyst is demonstrated to have higher catalytic activity toward CO2 hydrogenation to CH3OH.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Podjaski F, Kröger J, Lotsch BV (2018) Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Adv Mater 30:1705477 Podjaski F, Kröger J, Lotsch BV (2018) Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Adv Mater 30:1705477
2.
Zurück zum Zitat Zheng X, Cao X, Sun Z et al (2020) Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl Catal B Environ 272:118967 Zheng X, Cao X, Sun Z et al (2020) Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl Catal B Environ 272:118967
3.
Zurück zum Zitat Chen X, Chang J, Ke Q (2018) Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory. Carbon 126:53–57 Chen X, Chang J, Ke Q (2018) Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory. Carbon 126:53–57
4.
Zurück zum Zitat Chen X, Sun F, Bai F, Xie Z (2019) DFT study of the two dimensional metal–organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Appl Surf Sci 471:256–262 Chen X, Sun F, Bai F, Xie Z (2019) DFT study of the two dimensional metal–organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Appl Surf Sci 471:256–262
5.
Zurück zum Zitat Zhang L, Shan B, Zhao Y, Guo Z (2019) Review of micro seepage mechanisms in shale gas reservoirs. Int J Heat Mass Transfer 139:144–179 Zhang L, Shan B, Zhao Y, Guo Z (2019) Review of micro seepage mechanisms in shale gas reservoirs. Int J Heat Mass Transfer 139:144–179
6.
Zurück zum Zitat Zhang L, Chen Z, Zhao Y (2019) Well production performance analysis for shale gas reservoirs. Elsevier, Cambridge Zhang L, Chen Z, Zhao Y (2019) Well production performance analysis for shale gas reservoirs. Elsevier, Cambridge
7.
Zurück zum Zitat Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973 Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973
8.
Zurück zum Zitat Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658 Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658
9.
Zurück zum Zitat Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992 Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992
10.
Zurück zum Zitat Aresta M, Dibenedetto A, Angelini A (2013) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742 Aresta M, Dibenedetto A, Angelini A (2013) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742
11.
Zurück zum Zitat Ansari MB, Park S-E (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ Sci 5:9419–9437 Ansari MB, Park S-E (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ Sci 5:9419–9437
12.
Zurück zum Zitat Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727 Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727
13.
Zurück zum Zitat Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32 Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32
14.
Zurück zum Zitat Xu X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10:305–325 Xu X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10:305–325
15.
Zurück zum Zitat Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. a review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81 Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. a review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81
16.
Zurück zum Zitat Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42:6518–6530 Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42:6518–6530
17.
Zurück zum Zitat Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl Catal A: Gen 350:16–23 Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl Catal A: Gen 350:16–23
18.
Zurück zum Zitat Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal A: Gen 138:311–318 Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal A: Gen 138:311–318
19.
Zurück zum Zitat Behrens M, Studt F, Kasatkin I et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897 Behrens M, Studt F, Kasatkin I et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897
20.
Zurück zum Zitat Graciani J, Mudiyanselage K, Xu F et al (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550 Graciani J, Mudiyanselage K, Xu F et al (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550
21.
Zurück zum Zitat Tisseraud C, Comminges C, Pronier S, Pouilloux Y, Le Valant A (2016) The Cu−ZnO synergy in methanol synthesis part 3: impact of the composition of a selective Cu@ZnOx core−shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. J Catal 343:106–114 Tisseraud C, Comminges C, Pronier S, Pouilloux Y, Le Valant A (2016) The Cu−ZnO synergy in methanol synthesis part 3: impact of the composition of a selective Cu@ZnOx core−shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. J Catal 343:106–114
22.
Zurück zum Zitat Li MM-J, Zeng Z, Liao F, Hong X, Tsang SCE (2016) Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J Catal 343:157–167 Li MM-J, Zeng Z, Liao F, Hong X, Tsang SCE (2016) Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J Catal 343:157–167
23.
Zurück zum Zitat Gaikwad R, Bansode A, Urakawa A (2016) High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J Catal 343:127–132 Gaikwad R, Bansode A, Urakawa A (2016) High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J Catal 343:127–132
24.
Zurück zum Zitat Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) Effects of oxide carriers on surface functionality and process performance of the Cu−ZnO system in the synthesis of methanol via CO2 hydrogenation. J Catal 300:141–151 Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) Effects of oxide carriers on surface functionality and process performance of the Cu−ZnO system in the synthesis of methanol via CO2 hydrogenation. J Catal 300:141–151
25.
Zurück zum Zitat Lin S, Ma J, Ye X, Xie D, Guo H (2013) CO hydrogenation on Pd(111): competition between Fischer–Tropsch and oxygenate synthesis pathways. J Phys Chem C 117:14667–14676 Lin S, Ma J, Ye X, Xie D, Guo H (2013) CO hydrogenation on Pd(111): competition between Fischer–Tropsch and oxygenate synthesis pathways. J Phys Chem C 117:14667–14676
26.
Zurück zum Zitat Ye J, Liu C-J, Mei D, Ge Q (2014) Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study. J Catal 317:44–53 Ye J, Liu C-J, Mei D, Ge Q (2014) Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study. J Catal 317:44–53
27.
Zurück zum Zitat Toyir J, de la Piscina PR, Fierro JLG, Homs N (2001) Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl Catal B: Environ 34:255–266 Toyir J, de la Piscina PR, Fierro JLG, Homs N (2001) Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl Catal B: Environ 34:255–266
28.
Zurück zum Zitat Nerlov J, Sckerl S, Wambach J, Chorkendorff I (2000) Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co. Appl Catal A: Gen 191:97–109 Nerlov J, Sckerl S, Wambach J, Chorkendorff I (2000) Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co. Appl Catal A: Gen 191:97–109
29.
Zurück zum Zitat Jiang X, Koizumi N, Guo X, Song C (2015) Bimetallic Pd−Cu catalysts for selective CO2 hydrogenation to methanol. Appl Catal B: Environ 170:173–185 Jiang X, Koizumi N, Guo X, Song C (2015) Bimetallic Pd−Cu catalysts for selective CO2 hydrogenation to methanol. Appl Catal B: Environ 170:173–185
30.
Zurück zum Zitat Wang F, Ding X, Niu X, Liu X, Wang W, Zhang J (2020) Green preparation of core–shell Cu@Pd nanoparticles with chitosan for glucose detection. Carbohydr Polym 247:116647 Wang F, Ding X, Niu X, Liu X, Wang W, Zhang J (2020) Green preparation of core–shell Cu@Pd nanoparticles with chitosan for glucose detection. Carbohydr Polym 247:116647
31.
Zurück zum Zitat Gajjala RKR, Palathedath SK (2018) Cu@Pd core-shell nanostructures for highly sensitive and selective amperometric analysis of histamine. Biosens Bioelectron 102:242–246 Gajjala RKR, Palathedath SK (2018) Cu@Pd core-shell nanostructures for highly sensitive and selective amperometric analysis of histamine. Biosens Bioelectron 102:242–246
32.
Zurück zum Zitat Chen Y, Yang Y, Fu G, Xu L, Sun D, Lee J-M, Tang Y (2018) Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. J Mater Chem A 6:10632–10638 Chen Y, Yang Y, Fu G, Xu L, Sun D, Lee J-M, Tang Y (2018) Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. J Mater Chem A 6:10632–10638
33.
Zurück zum Zitat Li S, Cheng D, Qiu X, Cao D (2014) Synthesis of Cu@Pd core-shell nanowires with enhanced activity and stability for formic acid oxidation. Electrochim Acta 143:44–48 Li S, Cheng D, Qiu X, Cao D (2014) Synthesis of Cu@Pd core-shell nanowires with enhanced activity and stability for formic acid oxidation. Electrochim Acta 143:44–48
34.
Zurück zum Zitat Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764 Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764
35.
Zurück zum Zitat Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517 Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517
36.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868 Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868
37.
Zurück zum Zitat Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249 Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249
38.
Zurück zum Zitat Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441 Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441
39.
Zurück zum Zitat Halgren TA, Lipscomb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49:225–232 Halgren TA, Lipscomb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49:225–232
40.
Zurück zum Zitat Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm JA (2003) Generalized synchronous transit method for transition state location. Comp Mater Sci 28:250–258 Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm JA (2003) Generalized synchronous transit method for transition state location. Comp Mater Sci 28:250–258
41.
Zurück zum Zitat Pan Y, Liu C-J, Ge Q (2008) Adsorption and protonation of CO2 on partially hydroxylated γ-Al2O3 surfaces: a density functional theory study. Langmuir 24:12410–12419 Pan Y, Liu C-J, Ge Q (2008) Adsorption and protonation of CO2 on partially hydroxylated γ-Al2O3 surfaces: a density functional theory study. Langmuir 24:12410–12419
42.
Zurück zum Zitat Liu L, Yao H, Jiang Z, Fang T (2018) Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Appl Surf Sci 451:333–345 Liu L, Yao H, Jiang Z, Fang T (2018) Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Appl Surf Sci 451:333–345
43.
Zurück zum Zitat Zhao Y-F, Yang Y, Mims C, Peden CHF, Li J, Mei D (2011) Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O. J Catal 281:199–221 Zhao Y-F, Yang Y, Mims C, Peden CHF, Li J, Mei D (2011) Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O. J Catal 281:199–221
44.
Zurück zum Zitat Peng G, Sibener SJ, Schatz GC, Ceyer ST, Mavrikakis M (2012) CO2 hydrogenation to formic acid on Ni(111). J Phys Chem C 116:3001–3006 Peng G, Sibener SJ, Schatz GC, Ceyer ST, Mavrikakis M (2012) CO2 hydrogenation to formic acid on Ni(111). J Phys Chem C 116:3001–3006
45.
Zurück zum Zitat Zhang R, Wang B, Liu H, Ling L (2011) Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study. J Phys Chem C 115:19811–19818 Zhang R, Wang B, Liu H, Ling L (2011) Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study. J Phys Chem C 115:19811–19818
46.
Zurück zum Zitat Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Nørskov JK, Chorkendorff I (1994) Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2. Catal Lett 26:373–381 Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Nørskov JK, Chorkendorff I (1994) Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2. Catal Lett 26:373–381
47.
Zurück zum Zitat Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355:1296–1299 Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355:1296–1299
48.
Zurück zum Zitat Kattel S, Yan B, Yang Y, Chen JG, Liu P (2016) Optimizing binding energies of key intermediates for CO2 Hydrogenation to methanol over oxide-supported copper. J Am Chem Soc 138:12440–12450 Kattel S, Yan B, Yang Y, Chen JG, Liu P (2016) Optimizing binding energies of key intermediates for CO2 Hydrogenation to methanol over oxide-supported copper. J Am Chem Soc 138:12440–12450
49.
Zurück zum Zitat Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384 Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384
50.
Zurück zum Zitat Christmann K, Demuth JE (1982) The adsorption and reaction of methanol on Pd(100). I. Chem Conden J Chem Phys 76:6308–6317 Christmann K, Demuth JE (1982) The adsorption and reaction of methanol on Pd(100). I. Chem Conden J Chem Phys 76:6308–6317
51.
Zurück zum Zitat Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys Chem Chem Phys 12:9909–9917 Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys Chem Chem Phys 12:9909–9917
52.
Zurück zum Zitat Zhang X, Liu J-X, Zijlstra B, Filot IAW, Zhou Z, Sun S, Hensen EJM (2018) Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 43:200–209 Zhang X, Liu J-X, Zijlstra B, Filot IAW, Zhou Z, Sun S, Hensen EJM (2018) Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 43:200–209
Metadaten
Titel
First-principles investigation of methanol synthesis from CO2 hydrogenation on Cu@Pd core–shell surface
verfasst von
Jiangshan Liu
Qiang Ke
Xin Chen
Publikationsdatum
06.11.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05335-6

Weitere Artikel der Ausgabe 5/2021

Journal of Materials Science 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.