Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2021

17.07.2021 | Research Article-Mechanical Engineering

Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study

verfasst von: Puneet Rana, B. Mahanthesh, Kottakkaran Sooppy Nisar, K. Swain, Manisha Devi

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Micropolar fluids are used in lubrication theory, thrust bearing technologies, cervical flows, lubricants, paint rheology, and the polymer industry. This study develops the numerical simulation of the magneto-Darcy flow of a polarized nanoliquid with Joule heating and viscous heating mechanisms on an exponentially elongated surface. The effects of linearized Rosseland radiation and temperature-dependent heat generation are considered. The flow is generated by an exponential form of elongation of a flexible sheet. The porous matrix and nanoparticle effects are characterized by the Darcy expression and the two-component Buongiorno model correspondingly. The resulting partial differential systems are solved numerically using the Runge–Kutta-based shooting technique to interpret the importance of key parameters in physical quantities. A direct comparison is made to validate the results. Our results demonstrated that arbitrary movement of the nanoparticles significantly advances the temperature profile by reducing the concentration of nanoparticles. Both Joule heating and viscous heating mechanisms improve the structure of the thermal boundary layer. The porous matrix reduces the velocity of the nanoliquid and thus the width of the velocity boundary layer is reduced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Eringen, C.: Theory of thermo-micro fluids. J. Math. Anal. Appl. 38, 480–496 (1972)CrossRef Eringen, C.: Theory of thermo-micro fluids. J. Math. Anal. Appl. 38, 480–496 (1972)CrossRef
2.
Zurück zum Zitat Jena, S.K.; Mathur, M.N.: Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate. Int. J. Eng. Sci. 19, 1431–1439 (1981)CrossRef Jena, S.K.; Mathur, M.N.: Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate. Int. J. Eng. Sci. 19, 1431–1439 (1981)CrossRef
3.
Zurück zum Zitat Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)CrossRef Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)CrossRef
4.
Zurück zum Zitat Ishak, A.: Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45, 367–373 (2010)CrossRef Ishak, A.: Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45, 367–373 (2010)CrossRef
5.
Zurück zum Zitat Debarati, M.; Babu, R.; Mahanthesh, B.: Theoretical and analytical analysis of convective heat transport of radiated micropolar fluid over a vertical plate under nonlinear Boussinesq approximation. Multidisc. Model. Mater. Struct. 48, 81 (2020) Debarati, M.; Babu, R.; Mahanthesh, B.: Theoretical and analytical analysis of convective heat transport of radiated micropolar fluid over a vertical plate under nonlinear Boussinesq approximation. Multidisc. Model. Mater. Struct. 48, 81 (2020)
6.
Zurück zum Zitat Rashidi, M.M.: Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Commun. Nonlinear Sci. Numer. Simul. 16, 1874–1889 (2011)CrossRef Rashidi, M.M.: Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Commun. Nonlinear Sci. Numer. Simul. 16, 1874–1889 (2011)CrossRef
7.
Zurück zum Zitat Shit, G.C.: Unsteady flow and heat transfer of a MHD micropolar fluid over a porous stretching sheet in the presence of thermal radiation. J. Mech. 29, 559–568 (2013)CrossRef Shit, G.C.: Unsteady flow and heat transfer of a MHD micropolar fluid over a porous stretching sheet in the presence of thermal radiation. J. Mech. 29, 559–568 (2013)CrossRef
8.
Zurück zum Zitat Turkyilmazoglu, M.: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf. 72, 288–291 (2014)CrossRef Turkyilmazoglu, M.: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf. 72, 288–291 (2014)CrossRef
9.
Zurück zum Zitat Gireesha, B.J.; Mahanthesh, B.; Manjunatha, P.T.; Gorla, R.S.R.: Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid–particle suspension. J Nig Math Soc. 34, 267–285 (2015)MathSciNetCrossRef Gireesha, B.J.; Mahanthesh, B.; Manjunatha, P.T.; Gorla, R.S.R.: Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid–particle suspension. J Nig Math Soc. 34, 267–285 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Aurangzaib, M.S.; Uddin, K.; Bhattacharyya, S.: Shafie Micropolar fluid flow and heat transfer over an exponentially permeable shrinking sheet. Propul. Power Res. 5, 310–317 (2016)CrossRef Aurangzaib, M.S.; Uddin, K.; Bhattacharyya, S.: Shafie Micropolar fluid flow and heat transfer over an exponentially permeable shrinking sheet. Propul. Power Res. 5, 310–317 (2016)CrossRef
11.
Zurück zum Zitat Mabood, F.; Ibrahim, S.M.: Effects of Soret and non-uniform heat source on MHD non-Darcian convective flow over a stretching sheet in a dissipative micropolar fluid with radiation. J. Appl. Fluid Mech. 9, 2503–2513 (2016)CrossRef Mabood, F.; Ibrahim, S.M.: Effects of Soret and non-uniform heat source on MHD non-Darcian convective flow over a stretching sheet in a dissipative micropolar fluid with radiation. J. Appl. Fluid Mech. 9, 2503–2513 (2016)CrossRef
12.
Zurück zum Zitat Rout, P.K.; Sahoo, S.N.; Dash, G.C.; Mishra, S.R.: Chemical reaction effect on MHD free convection flow in a micropolar fluid. Alex. Eng. J. 55, 2967–2973 (2016)CrossRef Rout, P.K.; Sahoo, S.N.; Dash, G.C.; Mishra, S.R.: Chemical reaction effect on MHD free convection flow in a micropolar fluid. Alex. Eng. J. 55, 2967–2973 (2016)CrossRef
13.
Zurück zum Zitat Tripathy, R.S.; Dash, G.C.; Mishra, S.R.; Hoque, M.M.: Numerical analysis of hydromagnetic micropolar fluid along a stretching sheet embedded in porous medium with non-uniform heat source and chemical reaction. Eng. Sci. Technol. Int. J. 19, 1573–1581 (2016) Tripathy, R.S.; Dash, G.C.; Mishra, S.R.; Hoque, M.M.: Numerical analysis of hydromagnetic micropolar fluid along a stretching sheet embedded in porous medium with non-uniform heat source and chemical reaction. Eng. Sci. Technol. Int. J. 19, 1573–1581 (2016)
15.
Zurück zum Zitat Hsiao, K.-L.: Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int. J. Heat Mass Transf. 112, 283–290 (2017)CrossRef Hsiao, K.-L.: Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int. J. Heat Mass Transf. 112, 283–290 (2017)CrossRef
17.
Zurück zum Zitat Lund, L.A.: Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of viscous dissipation and Joule heating over an exponential shrinking sheet. Symmetry 12, 142–158 (2020)CrossRef Lund, L.A.: Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of viscous dissipation and Joule heating over an exponential shrinking sheet. Symmetry 12, 142–158 (2020)CrossRef
18.
Zurück zum Zitat Yousif, M.A.; Ismael, H.F.; Abbas, T.; Ellahi, R.: Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation. Heat Transfer Res. 50(7), 649 (2019)CrossRef Yousif, M.A.; Ismael, H.F.; Abbas, T.; Ellahi, R.: Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation. Heat Transfer Res. 50(7), 649 (2019)CrossRef
19.
Zurück zum Zitat Rehman, S.U.; Mariam, A.; Ullah, A.; Asjad, M.I.; Bajuri, M.Y.; Pansera, B.A.; Ahmadian, A.: Numerical computation of buoyancy and radiation effects on MHD micropolar nanofluid flow over a stretching/shrinking sheet with heat source. Case Stud. Thermal Eng. 25,(2021) Rehman, S.U.; Mariam, A.; Ullah, A.; Asjad, M.I.; Bajuri, M.Y.; Pansera, B.A.; Ahmadian, A.: Numerical computation of buoyancy and radiation effects on MHD micropolar nanofluid flow over a stretching/shrinking sheet with heat source. Case Stud. Thermal Eng. 25,(2021)
20.
Zurück zum Zitat Ghadikolaei, S.S.; Hosseinzadeh, K.; Ganji, D.D.; Jafari, B.: Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Thermal Eng. 12, 176–187 (2018)CrossRef Ghadikolaei, S.S.; Hosseinzadeh, K.; Ganji, D.D.; Jafari, B.: Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Thermal Eng. 12, 176–187 (2018)CrossRef
21.
Zurück zum Zitat Swapna, G.; Kumar, L.; Rana, P.; Kumari, A.; Singh, B.: Finite element study of radiative mixed convection magneto-micropolar flow in a porous medium with chemical reaction and convective condition. Alex. Eng. J. 57(1), 107–120 (2018)CrossRef Swapna, G.; Kumar, L.; Rana, P.; Kumari, A.; Singh, B.: Finite element study of radiative mixed convection magneto-micropolar flow in a porous medium with chemical reaction and convective condition. Alex. Eng. J. 57(1), 107–120 (2018)CrossRef
22.
Zurück zum Zitat Mishra, S.R.; Baag, S.; Mohapatra, D.K.: Chemical reaction and Soret effects on hydromagnetic micropolar fluid along a stretching sheet. Eng. Sci. Technol. Int. J. 19(4), 1919–1928 (2016) Mishra, S.R.; Baag, S.; Mohapatra, D.K.: Chemical reaction and Soret effects on hydromagnetic micropolar fluid along a stretching sheet. Eng. Sci. Technol. Int. J. 19(4), 1919–1928 (2016)
23.
Zurück zum Zitat Rout, P.K.; Sahoo, S.N.; Dash, G.C.; Mishra, S.R.: Chemical reaction effect on MHD free convection flow in a micropolar fluid. Alex. Eng. J. 55(3), 2967–2973 (2016)CrossRef Rout, P.K.; Sahoo, S.N.; Dash, G.C.; Mishra, S.R.: Chemical reaction effect on MHD free convection flow in a micropolar fluid. Alex. Eng. J. 55(3), 2967–2973 (2016)CrossRef
24.
Zurück zum Zitat Mishra, S.R.; Hoque, M.M.; Mohanty, B.; Anika, N.N.: Heat transfer effect on MHD flow of a micropolar fluid through porous medium with uniform heat source and radiation. Nonlinear Eng. 8(1), 65–73 (2019)CrossRef Mishra, S.R.; Hoque, M.M.; Mohanty, B.; Anika, N.N.: Heat transfer effect on MHD flow of a micropolar fluid through porous medium with uniform heat source and radiation. Nonlinear Eng. 8(1), 65–73 (2019)CrossRef
25.
Zurück zum Zitat Shi, L.; He, Y.; Hu, Y.; Wang, X.: Thermophysical properties of Fe3O4@ CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Convers. Manage. 177, 249–257 (2018)CrossRef Shi, L.; He, Y.; Hu, Y.; Wang, X.: Thermophysical properties of Fe3O4@ CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Convers. Manage. 177, 249–257 (2018)CrossRef
26.
Zurück zum Zitat Shi, L.; Hu, Y.; He, Y.: Magnetocontrollable convective heat transfer of nanofluid through a straight tube. Appl. Thermal Eng. 162, 114220 (2019)CrossRef Shi, L.; Hu, Y.; He, Y.: Magnetocontrollable convective heat transfer of nanofluid through a straight tube. Appl. Thermal Eng. 162, 114220 (2019)CrossRef
27.
Zurück zum Zitat Shi, L.; Hu, Y.; He, Y.: Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid. Nano Energy 71, 104582 (2020)CrossRef Shi, L.; Hu, Y.; He, Y.: Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid. Nano Energy 71, 104582 (2020)CrossRef
Metadaten
Titel
Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study
verfasst von
Puneet Rana
B. Mahanthesh
Kottakkaran Sooppy Nisar
K. Swain
Manisha Devi
Publikationsdatum
17.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05926-8

Weitere Artikel der Ausgabe 12/2021

Arabian Journal for Science and Engineering 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.