Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2021

16.07.2021 | Research Article-Mechanical Engineering

Theoretical Exploration of Thermal Transportation with Lorentz Force for Fourth-Grade Fluid Model Obeying Peristaltic Mechanism

verfasst von: M. Y. Rafiq, Zaheer Abbas, Jafar Hasnain

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The heat transfer phenomenon plays an imperative role in several biological and industrial processes, like the oil production industries, catalytic reactors, energy losses in several thermal systems, energy storage, papers manufacture and heat exchanger systems. Therefore, the present analysis investigates the heat transfer phenomena on peristaltic transportation of the hydromagnetic flow of non-Newtonian fourth-grade fluid in a tapered asymmetric channel filled with porous media. Moreover, the impacts of heat source/sink and thermal radiation in modeling are retained. The tapered asymmetry in the channel is generated by undertaking the peristaltic wave train inflicted on the non-uniform walls to have altered phases and amplitudes. The analysis is originated by adopting suppositions of long wavelength \(\left( {\delta < < 1} \right)\), small Deborah number \(\left( {\Gamma \to 0} \right)\) and low Reynolds number \(\left( {\text{R} \to 0} \right)\). A regular perturbation technique is utilized to acquire the series outcomes for the axial velocity, pressure gradient and streamlines distribution, while an analytical outcome has been acquired for the thermal profile. The pressure rise at each wavelength on the channel walls has been numerically computed. Impacts of arising parameters in the analysis are surveyed graphically. Outcomes divulge that magnitude of the axial velocity raises with a rise of Darcy number. In contrast, it diminishes with a raise of the magnetic parameter near the center of the channel. Furthermore, the calculated outcomes are found in admirable agreement with the outcomes acquired by the finite element technique and previously published results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Haynes, R.H.: Physical basis of the dependence of blood viscosity on tube radius. Am. J. Physiol.-Legacy Content 198(6), 1193–1200 (1960)CrossRef Haynes, R.H.: Physical basis of the dependence of blood viscosity on tube radius. Am. J. Physiol.-Legacy Content 198(6), 1193–1200 (1960)CrossRef
2.
Zurück zum Zitat Haroun, M.H.: Non-linear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel. Comput. Mater. Sci. 39(2), 324–333 (2007)CrossRef Haroun, M.H.: Non-linear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel. Comput. Mater. Sci. 39(2), 324–333 (2007)CrossRef
3.
Zurück zum Zitat Hayat, T.; Asghar, Z.; Asghar, S.; Mesloub, S.: Influence of inclined magnetic field on peristaltic transport of fourth grade fluid in an inclined asymmetric channel. J. Taiwan Inst. Chem. Eng. 41(5), 553–563 (2010)CrossRef Hayat, T.; Asghar, Z.; Asghar, S.; Mesloub, S.: Influence of inclined magnetic field on peristaltic transport of fourth grade fluid in an inclined asymmetric channel. J. Taiwan Inst. Chem. Eng. 41(5), 553–563 (2010)CrossRef
4.
Zurück zum Zitat Mustafa, M.; Abbasbandy, S.; Hina, S.; Hayat, T.: Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J. Taiwan Inst. Chem. Eng. 45(2), 308–316 (2014)CrossRef Mustafa, M.; Abbasbandy, S.; Hina, S.; Hayat, T.: Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J. Taiwan Inst. Chem. Eng. 45(2), 308–316 (2014)CrossRef
5.
Zurück zum Zitat Abd-Alla, A.M.; Abo-Dahab, S.M.; El-Shahrany, H.D.: Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field. J. Magn. Magn. Mater. 349, 268–280 (2014)CrossRef Abd-Alla, A.M.; Abo-Dahab, S.M.; El-Shahrany, H.D.: Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field. J. Magn. Magn. Mater. 349, 268–280 (2014)CrossRef
6.
Zurück zum Zitat Kothandapani, M.; Pushparaj, V.; Prakash, J.: Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. J. King Saud Univ.-Eng. Sci. 30(1), 86–95 (2018) Kothandapani, M.; Pushparaj, V.; Prakash, J.: Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. J. King Saud Univ.-Eng. Sci. 30(1), 86–95 (2018)
7.
Zurück zum Zitat Arifuzzaman, S.M.; Khan, M.S.; Al-Mamun, A.; Reza-E-Rabbi, S.; Biswas, P.; Karim, I.: Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. J. King Saud Univ.-Sci. 31(4), 1388–1398 (2019)CrossRef Arifuzzaman, S.M.; Khan, M.S.; Al-Mamun, A.; Reza-E-Rabbi, S.; Biswas, P.; Karim, I.: Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. J. King Saud Univ.-Sci. 31(4), 1388–1398 (2019)CrossRef
8.
Zurück zum Zitat Latham, T.W.: Fluid motions in peristaltic pump (MS thesis). MIT, Cambridge, MA (1966) Latham, T.W.: Fluid motions in peristaltic pump (MS thesis). MIT, Cambridge, MA (1966)
9.
Zurück zum Zitat Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37(4), 799–825 (1969)CrossRef Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37(4), 799–825 (1969)CrossRef
10.
Zurück zum Zitat Asha, S.K.; Deepa, C.K.: Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Results Eng. 3, 100024 (2019)CrossRef Asha, S.K.; Deepa, C.K.: Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Results Eng. 3, 100024 (2019)CrossRef
11.
Zurück zum Zitat Javed, M.; Naz, R.: Peristaltic flow of a realistic fluid in a compliant channel. Phys. A: Stat. Mech. Appl. 551, 123895 (2020)MathSciNetCrossRef Javed, M.; Naz, R.: Peristaltic flow of a realistic fluid in a compliant channel. Phys. A: Stat. Mech. Appl. 551, 123895 (2020)MathSciNetCrossRef
12.
Zurück zum Zitat Rajashekhar, C.; Vaidya, H.; Prasad, K.V.; Tlili, I.; Patil, A.; Nagathan, P.: Unsteady flow of Rabinowitsch fluid peristaltic transport in a non-uniform channel with temperature-dependent properties. Alex. Eng. J. 59(2), 693–706 (2020)CrossRef Rajashekhar, C.; Vaidya, H.; Prasad, K.V.; Tlili, I.; Patil, A.; Nagathan, P.: Unsteady flow of Rabinowitsch fluid peristaltic transport in a non-uniform channel with temperature-dependent properties. Alex. Eng. J. 59(2), 693–706 (2020)CrossRef
13.
Zurück zum Zitat Vaidya, H.; Rajashekhar, C.; Divya, B.B.; Manjunatha, G.; Prasad, K.V.; Animasaun, I.L.: Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel. Results Phys. 18, 103295 (2020)CrossRef Vaidya, H.; Rajashekhar, C.; Divya, B.B.; Manjunatha, G.; Prasad, K.V.; Animasaun, I.L.: Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel. Results Phys. 18, 103295 (2020)CrossRef
14.
Zurück zum Zitat Saleem, A.; Akhtar, S.; Alharbi, F.M.; Nadeem, S.; Ghalambaz, M.; Issakhov, A.: Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Results Phys. 19, 103431 (2020)CrossRef Saleem, A.; Akhtar, S.; Alharbi, F.M.; Nadeem, S.; Ghalambaz, M.; Issakhov, A.: Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Results Phys. 19, 103431 (2020)CrossRef
15.
Zurück zum Zitat Abo-Elkhair, R.E.; Bhatti, M.M.; Mekheimer, K.S.: Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: An expanding horizon. Int. Commun. Heat Mass Transf. 123, 105228 (2021)CrossRef Abo-Elkhair, R.E.; Bhatti, M.M.; Mekheimer, K.S.: Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: An expanding horizon. Int. Commun. Heat Mass Transf. 123, 105228 (2021)CrossRef
16.
Zurück zum Zitat Imran, N.; Javed, M.; Sohail, M.; Tlili, I.: Simultaneous effects of heterogeneous-homogeneous reactions in peristaltic flow comprising thermal radiation: Rabinowitsch fluid model. J. Mater. Res. Technol. 9, 3520–3529 (2020)CrossRef Imran, N.; Javed, M.; Sohail, M.; Tlili, I.: Simultaneous effects of heterogeneous-homogeneous reactions in peristaltic flow comprising thermal radiation: Rabinowitsch fluid model. J. Mater. Res. Technol. 9, 3520–3529 (2020)CrossRef
17.
Zurück zum Zitat Noreen, S.; Kausar, T.; Tripathi, D.; Ain, Q.U.; Lu, D.C.: Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Thermal Sci. Eng. Progress 17, 100486 (2020)CrossRef Noreen, S.; Kausar, T.; Tripathi, D.; Ain, Q.U.; Lu, D.C.: Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Thermal Sci. Eng. Progress 17, 100486 (2020)CrossRef
18.
Zurück zum Zitat Rashid, M.; Ansar, K.; Nadeem, S.: Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Phys. A: Stat. Mech. Appl. 553, 123979 (2020)MathSciNetCrossRef Rashid, M.; Ansar, K.; Nadeem, S.: Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Phys. A: Stat. Mech. Appl. 553, 123979 (2020)MathSciNetCrossRef
19.
Zurück zum Zitat Saleem, S.; Akhtar, S.; Nadeem, S.; Saleem, A.; Ghalambaz, M.; Issakhov, A.: Mathematical study of electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls. Chin. J. Phys. 71, 300–311 (2021)MathSciNetCrossRef Saleem, S.; Akhtar, S.; Nadeem, S.; Saleem, A.; Ghalambaz, M.; Issakhov, A.: Mathematical study of electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls. Chin. J. Phys. 71, 300–311 (2021)MathSciNetCrossRef
20.
Zurück zum Zitat Hayat, T.; Asghar, S.; Tanveer, A.; Alsaedi, A.: Chemical reaction in peristaltic motion of MHD couple stress fluid in channel with Soret and Dufour effects. Results Phys. 10, 69–80 (2018)CrossRef Hayat, T.; Asghar, S.; Tanveer, A.; Alsaedi, A.: Chemical reaction in peristaltic motion of MHD couple stress fluid in channel with Soret and Dufour effects. Results Phys. 10, 69–80 (2018)CrossRef
21.
Zurück zum Zitat Bhatti, M.M.; Riaz, A.; Zhang, L.; Sait, S.M.; Ellahi, R.: Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. J. Thermal Anal. Calorim. 144, 1–16 (2020) Bhatti, M.M.; Riaz, A.; Zhang, L.; Sait, S.M.; Ellahi, R.: Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. J. Thermal Anal. Calorim. 144, 1–16 (2020)
22.
Zurück zum Zitat Divya, B.B.; Manjunatha, G.; Rajashekhar, C.; Vaidya, H.; Prasad, K.V.: The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffrey fluid with heat and mass transfer. Alex. Eng. J. 59(2), 693–706 (2020)CrossRef Divya, B.B.; Manjunatha, G.; Rajashekhar, C.; Vaidya, H.; Prasad, K.V.: The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffrey fluid with heat and mass transfer. Alex. Eng. J. 59(2), 693–706 (2020)CrossRef
23.
Zurück zum Zitat Iqbal, J.; Abbasi, F.M.; Shehzad, S.A.: Heat transportation in peristalsis of Carreau-Yasuda nanofluid through a curved geometry with radial magnetic field. Int. Commun. Heat Mass Transf. 117, 104774 (2020)CrossRef Iqbal, J.; Abbasi, F.M.; Shehzad, S.A.: Heat transportation in peristalsis of Carreau-Yasuda nanofluid through a curved geometry with radial magnetic field. Int. Commun. Heat Mass Transf. 117, 104774 (2020)CrossRef
24.
Zurück zum Zitat Abbas, Z.; Rafiq, M.Y.; Hasnain, J.; Umer, H.: Impacts of lorentz force and chemical reaction on peristaltic transport of Jeffrey fluid in a penetrable channel with injection/suction at walls. Alex. Eng. J. 60(1), 1113–1122 (2021)CrossRef Abbas, Z.; Rafiq, M.Y.; Hasnain, J.; Umer, H.: Impacts of lorentz force and chemical reaction on peristaltic transport of Jeffrey fluid in a penetrable channel with injection/suction at walls. Alex. Eng. J. 60(1), 1113–1122 (2021)CrossRef
25.
Zurück zum Zitat Abbas, Z.; Rafiq, M.Y.; Alshomrani, A.S.; Ullah, M.Z.: Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Studies Thermal Eng. 23, 100817 (2021)CrossRef Abbas, Z.; Rafiq, M.Y.; Alshomrani, A.S.; Ullah, M.Z.: Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Studies Thermal Eng. 23, 100817 (2021)CrossRef
26.
Zurück zum Zitat Arain, M.B.; Bhatti, M.M.; Zeeshan, A.; Saeed, T.; Hobiny, A.: Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates. Math. Problems Eng. 2020, 1–17 (2020)MathSciNetCrossRef Arain, M.B.; Bhatti, M.M.; Zeeshan, A.; Saeed, T.; Hobiny, A.: Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates. Math. Problems Eng. 2020, 1–17 (2020)MathSciNetCrossRef
27.
Zurück zum Zitat Khazayinejad, M.; Hafezi, M.; Dabir, B.: Peristaltic transport of biological graphene-blood nanofluid considering inclined magnetic field and thermal radiation in a porous media. Powder Technol. 384, 452–465 (2021)CrossRef Khazayinejad, M.; Hafezi, M.; Dabir, B.: Peristaltic transport of biological graphene-blood nanofluid considering inclined magnetic field and thermal radiation in a porous media. Powder Technol. 384, 452–465 (2021)CrossRef
28.
Zurück zum Zitat Alsaedi, A.; Nisar, Z.; Hayat, T.; Ahmad, B.: Analysis of mixed convection and hall current for MHD peristaltic transport of nanofluid with compliant wall. Int. Commun. Heat Mass Transf. 121, 105121 (2021)CrossRef Alsaedi, A.; Nisar, Z.; Hayat, T.; Ahmad, B.: Analysis of mixed convection and hall current for MHD peristaltic transport of nanofluid with compliant wall. Int. Commun. Heat Mass Transf. 121, 105121 (2021)CrossRef
29.
Zurück zum Zitat Qureshi, I.H.; Awais, M.; Awan, S.E.; Abrar, M.N.; Raja, M.A.Z.; Alharbi, S.O.; Khan, I.: Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: numerical treatment. Case Studies Thermal Eng. 26, 101019 (2021)CrossRef Qureshi, I.H.; Awais, M.; Awan, S.E.; Abrar, M.N.; Raja, M.A.Z.; Alharbi, S.O.; Khan, I.: Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: numerical treatment. Case Studies Thermal Eng. 26, 101019 (2021)CrossRef
30.
Zurück zum Zitat Rosseland, S.: Astrophysik und Atom-Theoretische Grundlagen, 41–44. Springer-Verlag, Berlin (1931) Rosseland, S.: Astrophysik und Atom-Theoretische Grundlagen, 41–44. Springer-Verlag, Berlin (1931)
31.
Zurück zum Zitat Bhatti, M.M.; Marin, M.; Zeeshan, A.; Ellahi, R.; Abdelsalam, S.I.: Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)CrossRef Bhatti, M.M.; Marin, M.; Zeeshan, A.; Ellahi, R.; Abdelsalam, S.I.: Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)CrossRef
32.
Zurück zum Zitat Akram, S.; Athar, M.; Saeed, K.: Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Studies Thermal Eng. 25, 100965 (2021)CrossRef Akram, S.; Athar, M.; Saeed, K.: Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Studies Thermal Eng. 25, 100965 (2021)CrossRef
Metadaten
Titel
Theoretical Exploration of Thermal Transportation with Lorentz Force for Fourth-Grade Fluid Model Obeying Peristaltic Mechanism
verfasst von
M. Y. Rafiq
Zaheer Abbas
Jafar Hasnain
Publikationsdatum
16.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05877-0

Weitere Artikel der Ausgabe 12/2021

Arabian Journal for Science and Engineering 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.