Skip to main content
Erschienen in: Designs, Codes and Cryptography 12/2021

07.10.2021

Bounds for flag codes

verfasst von: Sascha Kurz

Erschienen in: Designs, Codes and Cryptography | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The application of flags to network coding has been introduced recently, see e.g. Liebhold et al. (Des Codes Cryptogr, 86(2):269-284, 2018). It is a variant to random linear network coding and explicit routing solutions for given networks. Here we study lower and upper bounds for the maximum possible cardinality of a corresponding flag code with given parameters.
Fußnoten
2
The target value of a feasible solution of an optimization problem is the value of the function that is optimized evaluated at that point. In the ILP of Proposition 3.12 the target function is the sum on the right hand side of (6).
 
3
By an optimal target value we denote the target value that is attained in the extremum, i.e., the maximum or minimum depending on the formulation of the optimization problem.
 
4
Let us assume \(A_2^f(6,3;\{2,3\})\le 185\) for a moment. Inequality (10) then would yield \(A_2^f(7,3;\{3,4\})\le \frac{127}{7}\cdot 185=3356 +\frac{3}{7}\). Of course this can be rounded down to 3356, since \(A_2^f(7,3;\{3,4\})\) is an integer. However, as in the case of constant dimension codes the rounding of the Johnson bound can be improved using the theory of \(q^r\)-divisible codes, see [10]. More concretely, for each codeword \(\left( W_3,W_4\right) \) we just consider the plane \(W_3\). Since we assume \(A_2^f(6,3;\{2,3\})\le 185\) those planes cover each point of \({\mathbb {F}}_2^7\) at most 185 times. If the flag code has cardinality 3356 then not every point of \({\mathbb {F}}_2^7\) can be covered exactly 185 times, i.e., the missing points correspond to a multiset of points of cardinality 3, which in turn corresponds to a binary linear code of effective length 3. Since it can be shown that this code has to be 4-divisible, i.e., the weight of every codeword has to be divisible by 4 and such a code cannot exist, we could strengthen our argument to \(A_2^f(7,3;\{3,4\})\le 3355\). (A 4-divisible binary linear code of effective length 10 indeed exists.) For the details we refer to [10, Lemma 13(i)] and its preparing results and definitions.
 
Literatur
1.
Zurück zum Zitat Alonso-González C., Navarro-Pérez M.Á., Soler-Escrivà X.: Flag codes from planar spreads in network coding. Finite Fields Their Appl. 68, 101745 (2020).MathSciNetCrossRef Alonso-González C., Navarro-Pérez M.Á., Soler-Escrivà X.: Flag codes from planar spreads in network coding. Finite Fields Their Appl. 68, 101745 (2020).MathSciNetCrossRef
2.
Zurück zum Zitat Beutelspacher A.: Partial spreads in finite projective spaces and partial designs. Math. Z. 145(3), 211–229 (1975).MathSciNetCrossRef Beutelspacher A.: Partial spreads in finite projective spaces and partial designs. Math. Z. 145(3), 211–229 (1975).MathSciNetCrossRef
3.
Zurück zum Zitat Cai H., Etzion T., Schwartz M., Wachter-Zeh A. Network coding solutions for the combination network and its subgraphs. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 862–866 (2019). Cai H., Etzion T., Schwartz M., Wachter-Zeh A. Network coding solutions for the combination network and its subgraphs. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 862–866 (2019).
4.
Zurück zum Zitat Drudge K.: On the orbits of singer groups and their subgroups. Electron. J. Comb. 1, R15–R15 (2002).MathSciNetMATH Drudge K.: On the orbits of singer groups and their subgroups. Electron. J. Comb. 1, R15–R15 (2002).MathSciNetMATH
5.
Zurück zum Zitat Etzion T., Kurz S., Otal K., Özbudak F.: Subspace packings: constructions and bounds. Des. Codes Cryptogr. 88, 1781–1810 (2020).MathSciNetCrossRef Etzion T., Kurz S., Otal K., Özbudak F.: Subspace packings: constructions and bounds. Des. Codes Cryptogr. 88, 1781–1810 (2020).MathSciNetCrossRef
7.
Zurück zum Zitat Gabidulin E.: Theory of codes with maximum rank distance. Probl. Peredachi Inform. 21(1), 3–16 (1985).MathSciNetMATH Gabidulin E.: Theory of codes with maximum rank distance. Probl. Peredachi Inform. 21(1), 3–16 (1985).MathSciNetMATH
8.
Zurück zum Zitat Glynn D.G.: On a set of lines of \({PG}(3, q)\) corresponding to a maximal cap contained in the Klein quadric of \({PG}(5, q)\). Geom. Dedic. 26(3), 273–280 (1988).MathSciNetCrossRef Glynn D.G.: On a set of lines of \({PG}(3, q)\) corresponding to a maximal cap contained in the Klein quadric of \({PG}(5, q)\). Geom. Dedic. 26(3), 273–280 (1988).MathSciNetCrossRef
10.
11.
Zurück zum Zitat Kohnert A., Kurz S. Construction of large constant dimension codes with a prescribed minimum distance. In: Mathematical Methods in Computer Science, pp. 31–42. Springer, New York (2008). Kohnert A., Kurz S. Construction of large constant dimension codes with a prescribed minimum distance. In: Mathematical Methods in Computer Science, pp. 31–42. Springer, New York (2008).
12.
Zurück zum Zitat Liebhold D. Flag Codes with Application to Network Coding. PhD thesis, RWTH Aachen (2019). Liebhold D. Flag Codes with Application to Network Coding. PhD thesis, RWTH Aachen (2019).
13.
Zurück zum Zitat Liebhold D., Nebe G., Vazquez-Castro A.: Network coding with flags. Des. Codes Cryptogr. 86(2), 269–284 (2018).MathSciNetCrossRef Liebhold D., Nebe G., Vazquez-Castro A.: Network coding with flags. Des. Codes Cryptogr. 86(2), 269–284 (2018).MathSciNetCrossRef
14.
Zurück zum Zitat Liebhold D., Nebe G., Vázquez-Castro M. Á. Generalizing subspace codes to flag codes using group actions. In: Network Coding and Subspace Designs, pp. 67–89. Springer, New York (2018). Liebhold D., Nebe G., Vázquez-Castro M. Á. Generalizing subspace codes to flag codes using group actions. In: Network Coding and Subspace Designs, pp. 67–89. Springer, New York (2018).
15.
Zurück zum Zitat Wang H., Xing C., Safavi-Naini R.: Linear authentication codes: bounds and constructions. IEEE Trans. Inf. Theory 49(4), 866–872 (2003).MathSciNetCrossRef Wang H., Xing C., Safavi-Naini R.: Linear authentication codes: bounds and constructions. IEEE Trans. Inf. Theory 49(4), 866–872 (2003).MathSciNetCrossRef
16.
Zurück zum Zitat Xia S.-T., Fu F.-W.: Johnson type bounds on constant dimension codes. Des. Codes Cryptogr. 50(2), 163–172 (2009).MathSciNetCrossRef Xia S.-T., Fu F.-W.: Johnson type bounds on constant dimension codes. Des. Codes Cryptogr. 50(2), 163–172 (2009).MathSciNetCrossRef
Metadaten
Titel
Bounds for flag codes
verfasst von
Sascha Kurz
Publikationsdatum
07.10.2021
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 12/2021
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00953-w

Weitere Artikel der Ausgabe 12/2021

Designs, Codes and Cryptography 12/2021 Zur Ausgabe

Premium Partner